Skip to main content

Horizontal Gene Transfer in Influenza Strain Generation: A Comparative Evolutionary Study

  • Chapter
  • First Online:
Evolutionary Biology: Mechanisms and Trends
  • 1888 Accesses

Abstract

Reassortment within the influenza virus—the swapping and exchange of entire gene segments can create entirely novel strains and has been implicated in virtually every pandemic or major outbreak. However, while individual transfer events have been documented or reconstructed, broad comparative studies are lacking. Here I identify, enumerate and compare reassortment events across different epidemiological compartments by measuring conflicting phylogenetic signal within very large genomic datasets taken from avian, human and swine hosted strains. I show that reassortment is not restricted to antigenic genes, specific hosts or strains, but present across all compartments. However the rate of reassortment varies across the datasets, especially in association with host species. I conclude that influence surveillance should focus on avian populations and that more attention is needed to the evolution of non-antigenic genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antia R, Regoes R, Koella J (2003) The role of evolution in the emergence of infectious diseases. Nature 426:658–666

    Article  PubMed  CAS  Google Scholar 

  • Boni MF, Zhou Y, Taubenberger JK, Holmes EC (2008) Homologous recombination is very rare or absent in human influenza a virus. J Virol 82:4807–4811

    Article  PubMed  CAS  Google Scholar 

  • Carrel MA, Emch M, Jobe RT, Moody A, Wan X-F (2010) Spatiotemporal structure of molecular evolution of H5N1 highly pathogenic avian influenza Viruses in Vietnam. PLoS ONE 5:e863

    Article  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:21

    Article  Google Scholar 

  • Dugan VG, Chen R, Spiro DJ, Sengamalay N, Zaborsky J, Ghedin E, Nolting J et al (2008) The evolutionary genetics and emergence of avian influenza viruses in wild birds. PLoS Pathog 4:e1000076

    Article  PubMed  Google Scholar 

  • Ferguson NM, Galvani AP, Bush RM (2003) Ecological and immunological determinants of influenza evolution. Nature 422:428–433

    Article  PubMed  CAS  Google Scholar 

  • Froissart R, Roze D, Uzest M, Galibert L, Blanc S, Michalakis Y (2005) Recombination every day: abundant recombination in a virus during a single multi-cellular host infection. PLoS Biol 3:e89

    Article  PubMed  Google Scholar 

  • Grimm D, Staeheli P, Hufbauer M, Koerner I, Martinez-Sobrido L, Solorzano A, Garcia-Sastre A (2007) Replication fitness determines high virulence of influenza A virus in mice carrying functional Mx1 resistance gene. Proc Natl Acad Sci USA 104:6806–6811

    Article  PubMed  CAS  Google Scholar 

  • Hamilton WD (2002) Narrow roads of gene land volume 2: evolution of sex. WH Freeman, Oxford

    Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  PubMed  CAS  Google Scholar 

  • Khiabanian H, Trifonov V, Rabadan R (2009) Reassortment patterns in Swine influenza viruses. PLoS ONE 4:e7366

    Article  PubMed  Google Scholar 

  • Kilbourne ED (2006) Influenza pandemics of the 20th century. Emerg Infect Dis 12:9

    Google Scholar 

  • Koelle K, Cobey S, Grenfell BT, Pascual M (2006) Epochal evolution shapes the phlyodynamics of interpandemic influenza A (H3N2) in humans. Science 314:1898–1903

    Article  PubMed  CAS  Google Scholar 

  • Kuiken T, Holmes EC, McCauley J, Rimmelzwaan GF, Williams CS, Grenfell BT (2006) Host species barriers to influenza virus infections. Science 312:394–397

    Article  PubMed  CAS  Google Scholar 

  • Li OTW, Chan MCW, Leung CSW, Chan RWY, Guan Y, Nicholls JM, Poon LLM (2009) Full factorial analysis of mammalian and avian influenza polymerase subunits suggests a role of an efficient polymerase for virus adaptation. PLoS ONE 4:e5658

    Article  PubMed  Google Scholar 

  • Li C, Hatta M, Nidom CA, Muramoto Y, Watanabe S, Neumann G, Kawaoka Y (2010) Reassortment between avian H5N1 and human H3N2 influenza viruses creates hybrid viruses with substantial virulence. Proc Natl Acad Sci USA 107:4687–4692

    Article  PubMed  CAS  Google Scholar 

  • Lloyd-Smith JO, George D, Pepin KM, Pitzer VE, Pulliam JRC, Dobson AP, Hudson PJ (2009) Epidemic dynamics at the human–animal interface. Science 326:1362–1367

    Article  PubMed  CAS  Google Scholar 

  • Meslin FX (1997) Global aspects of emerging and potential zoonoses: a WHO perspective. Emerg Infect Dis 3:223–228

    Article  PubMed  CAS  Google Scholar 

  • Nelson MI, Edelman L, Spiro DJ, Boyne AR, Bera J, Halpin R, Sengamalay N (2008) Molecular epidemiology of A/H3N2 and A/H1N1 influenza virus during a single epidemic season in the United States. PLoS Pathog 4:e1000133

    Article  PubMed  Google Scholar 

  • Niman HL (2007) Swine influenza A evolution via recombination—genetic drift reservoir. Nat Precedings. http://precedings.nature.com/documents/385/version/1/files/npre2007385-1.pdf

  • Nobusawa E, Sato K (2006) Comparison of the mutation rates of human influenza A and B viruses. J Virol 80:3675–3678

    Article  PubMed  CAS  Google Scholar 

  • Olsen B, Munster VJ, Wallensten A, Waldenström J, Osterhaus ADME, Fouchier RM (2006) Global patterns of influenza a virus in wild birds. Science 312:384–388

    Article  PubMed  CAS  Google Scholar 

  • Suarez DL, Senne Da Banks J, Brown IH, Essen SC, Lee C-W, Manvell RJ (2004) Recombination resulting in virulence shift in avian influenza outbreak Chile. Emerg Infect Dis 10:693–699

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Qin K, Wang J, Pu J, Tang Q, Hu Y, Bi Y (2011) High genetic compatibility and increased pathogenicity of reassortants derived from avian H9N2 and pandemic H1N1/2009 influenza viruses. Proc Natl Acad Sci USA 108:4164–4169

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Watanabe S, Shinya K, Kim JH, Hatta M, Kawaoka Y (2009) Viral RNA polymerase complex promotes optimal growth of 1918 virus in the lower respiratory tract of ferrets. Proc Natl Acad Sci USA 106:588–592

    Article  PubMed  CAS  Google Scholar 

  • Zambon MC (1999) Epidemiology and pathogenesis of influenza. J Antimicrob Chemoth 44(Suppl B):3–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul-Michael Agapow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Agapow, PM. (2012). Horizontal Gene Transfer in Influenza Strain Generation: A Comparative Evolutionary Study. In: Pontarotti, P. (eds) Evolutionary Biology: Mechanisms and Trends. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30425-5_12

Download citation

Publish with us

Policies and ethics