Skip to main content

Reconstruction of the Adaptively Advantages Macroevolutionary Events in the Mutualistic Symbioses

  • Chapter
  • First Online:
Evolutionary Biology: Mechanisms and Trends

Abstract

Mutualistic symbioses represent the favorable models for analyzing the tradeoff between progressive and adaptive evolution which remains unclear for the unitary (“free-living”) organisms. Using the model of N2-fixing legume-rhizobia symbiosis we demonstrate that acquisition by plants of the novel extracellular and intracellular compartments (infection threads, symbiosomes) for hosting the bacteria induce in their populations novel selective pressures in favor of host-beneficial (“altruistic”) traits (intensive in planta N2 fixation, export of fixed nitrogen into the plant tissues, differentiation into the non-reproducible bacteroids). Due to colonization of extracellular infection threads, the degree of clonality is increased in the endosymbiotic bacterial populations which opens prospects for the interdeme selection for an increased activity of symbiotic N2 fixation. When bacteria colonize the intracellular symbiosomes, this activity is further elevated due to the kin selection in favor of irreversible bacteroid differentiation. The revealed feedbacks between the macroevolutionary events occurring in hosts and the selective pressures induced in microsymbionts may be responsible for the rapid filiations from regulatory-type anodular rhizospheric/endophytic associations (based on stimulation of the growth and assimilatory capacities of roots by the bacteria-produced auxins) to the nutritional-type nodular symbioses (based on the novel organogenesis ensuring conditions optimal for the symbiotic N2 fixation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amarger N, Lobreau JP (1982) Quantitative study of nodulation competitiveness in Rhizobium strains. Appl Environ Microbiol 44:583–588

    PubMed  CAS  Google Scholar 

  • Berg LS (1969) Nomogenesis or evolution determined by law. MIT Press, Massachusetts

    Google Scholar 

  • Beringer JE, Brewin NJ, Johnston AWB (1980) The genetic analysis of Rhizobium in relation to symbiotic nitrogen fixation. Heredity 45:161–186

    Article  CAS  Google Scholar 

  • Brewin NJ (2004) Plant cell wall remodeling in the Rhizobium-legume symbiosis. Crit Rev Plant Sci 23:1–24

    Article  Google Scholar 

  • Bronstein JL (2009) The evolution of facilitation and mutualism. J Ecol 97:1160–1170

    Article  Google Scholar 

  • Broughton WJ, Samrey U, Stanley J (1987) Ecological genetics of Rhizobium meliloti: symbiotic plasmid transfer in the Medicago sativa rhizosphere. FEMS Microbiol Lett 40:251–255

    Article  CAS  Google Scholar 

  • Bryan JA, Berlyn GP, Gordon JC (1996) Towards a new concept of the evolution of symbiotic nitrogen fixation in the Leguminosae. Plant Soil 186:151–159

    Article  CAS  Google Scholar 

  • Deakin WJ, Broughton WJ (2009) Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 7:312–320

    PubMed  CAS  Google Scholar 

  • Denison RF, Kiers ET (2004a) Lifestyle alternatives for rhizobia: mutualism, parasitism and foregoing symbiosis. FEMS Microbiol Lett 237:187–193

    Article  PubMed  CAS  Google Scholar 

  • Denison RF, Kiers ET (2004b) Why are most rhizobia beneficial to their plant hosts, rather than parasitic? Microbes Infect 6:1235–1239

    Article  PubMed  CAS  Google Scholar 

  • Dorosinsky LM, Lazareva NM (1968) On the specificity of soybean and lupine nodule bacteria. Mikrobiologia [in Russian] 37:115–121

    Google Scholar 

  • Douglas AE (1994) Symbiotic interactions. Oxford University Press, Oxford

    Google Scholar 

  • Frank SA (1994) Genetics of mutualism: the evolution of altruism between species. J Theor Biol 170:393–400

    Article  PubMed  CAS  Google Scholar 

  • Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang WS, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Verméglio A, Médigue C, Sadowsky M (2007) Legume symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312

    Article  PubMed  Google Scholar 

  • Gorsuch RL (1983) Factor analysis. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Ichige A, Walker GC (1997) Genetic analysis of the Rhizobium meliloti bacA gene: functional interchangeability with the Escherichia coli sbmA gene and phenotypes of mutants. J Bacteriol 179:209–216

    PubMed  CAS  Google Scholar 

  • Iordansky NN (2010) Charles Darwin and the problem of evolutionary progress. Zhurnal Obshei Biologii [in Russian] 71:488–496

    Google Scholar 

  • Janzen DH (1980) When is it coevolution? Evolution 34:611–612

    Article  Google Scholar 

  • Kalevitch MV, Kefeli VI, Borsari B, Davis J, Bolous G (2004) Final version chemical signaling during organisms’ growth and development. J Cell Molec Biol 3:95–102

    Google Scholar 

  • Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui H, Kawaharada Y, Nakamura Y, Watanabe A, Kawashima K, Ono A, Shimizu Y, Takahashi C, Minami C, Fujishiro T, Kohara M, Katoh M, Nakazaki N, Nakayama S, Yamada M, Tabata S, Sato S (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17:37–50

    Article  PubMed  CAS  Google Scholar 

  • Kennedy IR (1996) Facilitating the evolution of an effective N2-fixing association between Azospirillum and wheat. In: Abstracts of the 7th International Symposium on Biological Nitrogen Fixation, Haisalabad, p 46

    Google Scholar 

  • Kistner C, Parniske M (2002) Evolution of signal transduction in intercellular symbiosis. Trends Plant Sci 7:511–518

    Article  PubMed  CAS  Google Scholar 

  • Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Becard G, Denarie J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–65

    Article  PubMed  CAS  Google Scholar 

  • Marchetti M, Capela D, Glew M, Cruveiller S, Chane-Woon-Ming B, Gris C, Timmers T, Poinsot V, Gilbert LB, Heeb P, Medigue C, Batut J, Masson-Boivin C (2010) Experimental evolution of a plant pathogen into legume symbionts. PLoS Biol 8:1–10

    Article  Google Scholar 

  • Margulis L (2009) Symbiogenesis. A new principle of evolution rediscovery of Boris Mikhaylovich Kozo-Polyansky (1890–1957) In: Kolchinsky EI (ed) Charles Darwin and modern biology. Nestor-Historia, St-Petersburg, pp 34–48

    Google Scholar 

  • Maynard Smith J, Feil EJ, Smith NH (2000) Population structure and evolutionary dynamics of pathogenic bacteria. BioEssays 22:1115–1122

    Article  Google Scholar 

  • Maynard Smith J, Smith NH, O’Rourke M, Spratt BG (1993) How clonal are bacteria? Proc Natl Acad Sci U S A 90:4384–4388

    Article  Google Scholar 

  • Michod RD, Roze D (1997) Transitions in individuality. Proc Roy Soc Lond B 264:853–857

    Article  CAS  Google Scholar 

  • Ochman H, Elwyn S, Moran NA (1999) Calibrating bacterial evolution. Proc Natl Acad Sci U S A 96:12638–12643

    Article  PubMed  CAS  Google Scholar 

  • Ohyama T, Ohtake N, Sueyoshi K, Tewari K, Takahashi Y, Ito S, Nishiwaki T, Nagumo Y, Ishii S, Sato T (2008) Nitrogen fixation and metabolism in soybean plants. In: Couto GN (ed) Nitrogen fixation research progress. Nova Science Publishers, New York, pp 15–109

    Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Rev Microbiol 6:763–775

    Article  CAS  Google Scholar 

  • Pretorius-Güth IM, Pühler A, Simon R (1990) Conjugal transfer of megaplasmid 2 between Rhizobium meliloti strains in alfalfa nodules. Appl Environ Microbiol 56:2354–2359

    PubMed  Google Scholar 

  • Provorov NA (1994) The interdependence between taxonomy of legumes and specificity of their interaction with rhizobia in relation to evolution of the symbiosis. Symbiosis 17:183–200

    Google Scholar 

  • Provorov NA (1998) Coevolution of rhizobia with legumes: facts and hypotheses. Symbiosis 24:337–367

    Google Scholar 

  • Provorov NA, Tikhonovich IA (2003) Genetic resources for improving nitrogen fixation in legume-rhizobia symbiosis. Genet Res Crop Evolut 50:89–99

    Article  CAS  Google Scholar 

  • Provorov NA, Vorobyov NI (2000) Population genetics of rhizobia: construction and analysis of an “infection and release” model. J Theor Biol 205:105–119

    Article  PubMed  CAS  Google Scholar 

  • Provorov NA, Vorobyov NI (2006) Interplay of Darwinian and frequency-dependent selection in the host-associated microbial populations. Theor Popul Biol 70:262–272

    Article  PubMed  Google Scholar 

  • Provorov NA, Vorobyov NI (2008) Equilibrium between the “genuine mutualists” and “symbiotic cheaters” in the bacterial population co-evolving with plants in a facultative symbiosis. Theor Populat Biol 74:345–355

    Article  Google Scholar 

  • Provorov NA, Vorobyov NI (2009) Host plant as on organizer of microbial evolution in the beneficial symbioses. Phytochem Rev 8:519–534

    Article  CAS  Google Scholar 

  • Provorov NA, Vorobyov NI (2010a) Tikhonovich IA (ed) Evolutionary genetics of plant–microbe symbioses. NOVA Science Publishers, New York

    Google Scholar 

  • Provorov NA, Vorobyov NI (2010b) Simulation of evolution implemented in the mutualistic symbioses towards enhancing their ecological efficiency, functional integrity and genotypic specificity. Theor Populat Biol 78:259–269

    Article  Google Scholar 

  • Ruse M (2000) Limits to our knowledge of evolution. In: Clegg MT, Hecht MK, MacIntryre RJ (eds) Evolutionary biology, vol 32. Kluwer Academic Publishers, New York, pp 3–31

    Google Scholar 

  • Saikia SP, Jain V, Khetarpal S, Aravind S (2007) Dinitrogen fixation activity of Azospirillum brasilense in maize (Zea mays). Curr Sci 93:1296–1300

    CAS  Google Scholar 

  • Schmalhausen I (1983) Pathways and regularities of the evolutionary process (in Russian). Nauka, Moscow

    Google Scholar 

  • Seckbach J (2002) Symbiosis: mechanisms and model systems. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Sessitsch A, Howieson JG, Perret X, Antoun H, Martinez-Romero E (2002) Advances in Rhizobium research. Crit Rev Plant Sci 21:323–378

    Article  CAS  Google Scholar 

  • Shtark OY, Borisov AY, Zhukov VA, Provorov NA, Tikhonovich IA (2010) Intimate associations of beneficial soil microbes with host plants. In: Dixon R, Tilston E (eds) Soil microbiology and sustainable crop production. Springer, Berlin, pp 119–196

    Chapter  Google Scholar 

  • Souza V, Nguyen TT, Hudson RR, Pinero D, Lenski RE (1992) Hierarchical analysis of linkage disequilibrium in Rhizobium populations: evidence for sex? Proc Natl Acad Sci U S A 89:8389–8393

    Article  PubMed  CAS  Google Scholar 

  • Sprent JI (2001) Nodulation in legumes. Cromwell Press Ltd, Kew

    Google Scholar 

  • Sprent JI (2007) Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol 174:11–25

    Article  PubMed  CAS  Google Scholar 

  • Stougaard J (2001) Genetics and genomics of root symbiosis. Curr Opin Plant Biol 4:328–335

    Article  PubMed  CAS  Google Scholar 

  • Streeter J (1995) Integration of plant and bacterial metabolism in nitrogen fixing systems. In: Tikhonovich IA, Provorov NA, Romanov VI, Newton WE (eds) Nitrogen fixations: fundamentals and applications. Kluwer Academic Publishers, Dordrecht, pp 67–76

    Chapter  Google Scholar 

  • Tikhonovich IA, Provorov NA (2009) From plant–microbe interactions to symbiogenetics: a universal paradigm for the inter-species genetic integration. Ann Appl Biol 154:341–350

    Article  Google Scholar 

  • Tikhonovich IA, Provorov NA (2012) Development of approaches for symbiogenetics to study the variability and heredity in the super-species systems. Russ J Genet 48 (accepted)

    Google Scholar 

  • Tort L, Balasch JC, Mackenzie S (2003) Fish immune system. The crossroads between innate and adaptive responses. Immunologia 22:277–286

    Google Scholar 

  • van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H, Satiat-Jeunemaître B, Alunni B, Bourge M, Kucho K, Abe M, Keresz A, Maroti G, Toshiki T, Kondorosi E, Mergaert P (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:122–1126

    Google Scholar 

  • van Ham RCHJ, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U, Fernández JM, Jiménez L, Postigo M, Silva FJ, Tamames J, Viguera E, Latorre A, Valencia A, Morán F, Moya A (2003) Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci U S A 100:581–586

    Article  PubMed  Google Scholar 

  • Vieille C, Elmerich C (1990) Characterization of two Azospirillum brasilense Sp7 plasmid genes homologous to Rhizobium meliloti nodPQ. Molec Plant–Microbe Interact 6:389–400

    Article  Google Scholar 

  • Vieille C, Elmerich C (1992) Characterization of an Azospirillum brasilense Sp7 plasmid gene homologous to Alcaligenes eutrophis phbB and Rhizobium meliloti nodG. Molec Gen Genet 231:375–384

    Article  PubMed  CAS  Google Scholar 

  • Yakovlev GP (1991) Legumes of the globe (in Russian). Nauka, Leningrad

    Google Scholar 

  • Young JPW, Crossman LC, Johnston AWB, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson ARJ, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Noebertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by grants from RFBR (12-04-00409a), RFBR-NWO (047.018.001), Scientific School 3440.2010.4, and State Contract (2.740.11.0698).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay A. Provorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Provorov, N.A., Vorobyov, N.I. (2012). Reconstruction of the Adaptively Advantages Macroevolutionary Events in the Mutualistic Symbioses. In: Pontarotti, P. (eds) Evolutionary Biology: Mechanisms and Trends. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30425-5_10

Download citation

Publish with us

Policies and ethics