Skip to main content

On Measuring the Perceptual Quality of Video Streams over Lossy Wireless Networks

  • Conference paper
Mobile Multimedia Communications (MobiMedia 2011)

Abstract

This paper studies the perceptual quality of video streams over lossy wireless networks. The focus is on investigating the impact on the perceived video quality of both physical error impairments and packet losses due to network congestion, by using objective and subjective evaluation methods. Extensive video quality assessments have shown that packet losses due to congestion are more severe than packet losses due to the physical error on the objective video quality. Furthermore, the comparison of MOS among different spatial resolution video sequences of the same bit rate indicates that a better perceived video quality can be achieved for lower resolution when the network is characterized by both high BER and network load.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhang, Q., Zhu, W., Zhang, Y.-Q.: End-to-End QoS for Video Delivery Over Wireless Internet. Proceedings of the IEEE 93(1), 123–134 (2005)

    Article  Google Scholar 

  2. Li, F., Liu, G.: Transmission Distortion Analysis for H.264 Video over Wireless Networks. In: 4th IEEE International Conference on Circuits and Systems for Communications, Shanghai, China, May 26-28, pp. 477–481 (2008)

    Google Scholar 

  3. Chikkerur, S., Sundaram, V., Reisslein, M., Karam, L.J.: Objective Video Quality Assessment Methods:A Classification, Review, and Performance Comparison. IEEE Transactions onBroadcasting 57(2), 165–182 (2011)

    Article  Google Scholar 

  4. De Simone, F., Naccari, M., Tagliasacchi, M., Dufaux, F., Tubaro, S., Ebrahimi, T.: Subjective Quality Assessment of H.264/AVC Video Streaming with Packet Losses. EURASIP Journal on Image and Video Processing 2011, 1–12 (2011)

    Article  Google Scholar 

  5. De Simone, F., Goldmann, L., Lee, J.-S., Ebrahimi, T., Baroncini, V.: Subjective evaluation of next-generation video compression algorithms: a case study. In: Proc. of SPIE, San Diego, California (August 2010)

    Google Scholar 

  6. ITU-R BT.500-11, Methodology for the Subjective Assessment (2002)

    Google Scholar 

  7. Gilbert, E.N.: Capacity of a burst-noise channel. Bell Systems Technical Journal 39, 1253–1265 (1960)

    Article  MathSciNet  Google Scholar 

  8. Elliot, E.: Estimates of error rates for codes on burst-noise channels. Bell Systems Technical Journal 42, 1977–1997 (1963)

    Article  Google Scholar 

  9. Wang, H.S., Moayeri, N.: Finite-state Markov Channel—A useful Model for Radio Communication Channels. IEEE Transactions on Vehicular Technology 44(1), 163–171 (1995)

    Article  Google Scholar 

  10. Zhang, Q., Kassam, S.: Finite-State Markov Model for Rayleigh Fading Channels. IEEE Transactions on Communications 47(11), 1688–1692 (1999)

    Article  Google Scholar 

  11. Sadeghi, P., Kennedy, R.A., Rapajic, P.B., Shams, R.: Finite-state Markov Modeling of Fading Channels: A Survey of Principles and Applications. IEEE Signal Processing Magazine 25(5), 57–80 (2008)

    Article  Google Scholar 

  12. Zhu, H., Karachontzitis, S., Toumpakaris, D.: Low Complexity Resource Allocation in Downlink Distributed Antenna Systems. IEEE Wireless Communications Magazine 17(3), 44–50 (2010)

    Article  Google Scholar 

  13. Aspelin, K.: (2005-05-25). Establishing Pedestrian Walking Speeds. Portland State University (retrieved August 24, 2009)

    Google Scholar 

  14. Oelbaum, T., Schwarz, H., Wien, M., Wiegand, T.: Subjective performance evaluation of the SVC Extension of H.264/AVC. In: IEEE ICIP Conference, San Diego (October 2008)

    Google Scholar 

  15. http://media.xiph.org/video/derf/

  16. H.264/AVC Software Coordination (2007), http://iphome.hhi.de/suehring/tml/

  17. The Network Simulator–NS-2, http://www.isi.edu/nsnam/ns/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Politis, I., Tsagkaropoulos, M., Dagiuklas, T., Dounis, L. (2012). On Measuring the Perceptual Quality of Video Streams over Lossy Wireless Networks. In: Atzori, L., Delgado, J., Giusto, D. (eds) Mobile Multimedia Communications. MobiMedia 2011. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30419-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30419-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30418-7

  • Online ISBN: 978-3-642-30419-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics