Skip to main content

Creation of Trophectoderm, the First Epithelium, in Mouse Preimplantation Development

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 55))

Abstract

Trophectoderm (TE) is the first cell type that emerges during development and plays pivotal roles in the viviparous mode of reproduction in placental mammals. TE adopts typical epithelium morphology to surround a fluid-filled cavity, whose expansion is critical for hatching and efficient interaction with the uterine endometrium for implantation. TE also differentiates into trophoblast cells to construct the placenta. This chapter is an overview of the cellular and molecular mechanisms that control the critical aspects of TE formation, namely, the formation of the blastocyst cavity, the expression of key transcription factors, and the roles of cell polarity in the specification of the TE lineage. Current gaps in our knowledge and challenging issues are also discussed that should be addressed in future investigations in order to further advance our understanding of the mechanisms of TE formation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adachi M, Inoko A, Hata M, Furuse K, Umeda K, Itoh M, Tsukita S (2006) Normal establishment of epithelial tight junctions in mice and cultured cells lacking expression of ZO-3, a tight-junction MAGUK protein. Mol Cell Biol 26:9003–15

    PubMed  CAS  Google Scholar 

  • Alarcon VB (2010) Cell polarity regulator PARD6B is essential for trophectoderm formation in the preimplantation mouse embryo. Biol Reprod 83:347–58

    PubMed  CAS  Google Scholar 

  • Apodaca G (2010) Opening ahead: early steps in lumen formation revealed. Nat Cell Biol 12:1026–8

    PubMed  CAS  Google Scholar 

  • Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17:126–40

    PubMed  CAS  Google Scholar 

  • Aziz H, Alexandre H (1991) The origin of the nascent blastocoele in preimplantation mouse embryos: Ultrastructural cytochemistry and effect of chloroquine. Roux’s Arch Dev Biol 200:77–85

    Google Scholar 

  • Barcroft LC, Moseley AE, Lingrel JB, Watson AJ (2004) Deletion of the Na/K-ATPase alpha1-subunit gene (Atp1a1) does not prevent cavitation of the preimplantation mouse embryo. Mech Dev 121:417–26

    PubMed  CAS  Google Scholar 

  • Barcroft LC, Offenberg H, Thomsen P, Watson AJ (2003) Aquaporin proteins in murine trophectoderm mediate transepithelial water movements during cavitation. Dev Biol 256:342–54

    PubMed  CAS  Google Scholar 

  • Barr KJ, Garrill A, Jones DH, Orlowski J, Kidder GM (1998) Contributions of Na+/H+ exchanger isoforms to preimplantation development of the mouse. Mol Reprod Dev 50:146–53

    PubMed  CAS  Google Scholar 

  • Bell CE, Lariviere NM, Watson PH, Watson AJ (2009) Mitogen-activated protein kinase (MAPK) pathways mediate embryonic responses to culture medium osmolarity by regulating Aquaporin 3 and 9 expression and localization, as well as embryonic apoptosis. Hum Reprod 24:1373–86

    PubMed  CAS  Google Scholar 

  • Biggers JD, Bell JE, Benos DJ (1988) Mammalian blastocyst: transport functions in a developing epithelium. Am J Physiol 255:C419–32

    PubMed  CAS  Google Scholar 

  • Borland RM, Biggers JD, Lechene CP (1977) Studies on the composition and formation of mouse blastocoele fluid using electron probe microanalysis. Dev Biol 55:1–8

    PubMed  CAS  Google Scholar 

  • Bruce AW (2011) What is the role of maternally provided Cdx2 mRNA in early mouse embryogenesis? Reprod Biomed Online 22:512–5

    PubMed  CAS  Google Scholar 

  • Bryant DM, Datta A, Rodríguez-Fraticelli AE, Peränen J, Martín-Belmonte F, Mostov KE (2010) A molecular network for de novo generation of the apical surface and lumen. Nat Cell Biol 12:1035–45

    PubMed  CAS  Google Scholar 

  • Chen L, Yabuuchi A, Eminli S, Takeuchi A, Lu CW, Hochedlinger K, Daley GQ (2009) Cross-regulation of the Nanog and Cdx2 promoters. Cell Res 19:1052–61

    PubMed  Google Scholar 

  • Dard N, Le T, Maro B, Louvet-Vallée S (2009) Inactivation of aPKClambda reveals a context dependent allocation of cell lineages in preimplantation mouse embryos. PLoS One 4:e7117

    PubMed  Google Scholar 

  • Delous M, Hellman NE, Gaudé HM, Silbermann F, Le Bivic A, Salomon R, Antignac C, Saunier S (2009) Nephrocystin-1 and nephrocystin-4 are required for epithelial morphogenesis and associate with PALS1/PATJ and Par6. Hum Mol Genet 18:4711–23

    PubMed  CAS  Google Scholar 

  • Dietrich JE, Hiiragi T (2007) Stochastic patterning in the mouse pre-implantation embryo. Development 134:4219–31

    PubMed  CAS  Google Scholar 

  • Eckert JJ, Fleming TP (2008) Tight junction biogenesis during early development. Biochim Biophys Acta 1778:717–28

    PubMed  CAS  Google Scholar 

  • Edashige K, Sakamoto M, Kasai M (2000) Expression of mRNAs of the aquaporin family in mouse oocytes and embryos. Cryobiology 40:171–5

    PubMed  CAS  Google Scholar 

  • Ema M, Mori D, Niwa H, Hasegawa Y, Yamanaka Y, Hitoshi S, Mimura J, Kawabe Y, Hosoya T, Morita M, Shimosato D, Uchida K, Suzuki N, Yanagisawa J, Sogawa K, Rossant J, Yamamoto M, Takahashi S, Fujii-Kuriyama Y (2008) Krüppel-like factor 5 is essential for blastocyst development and the normal self-renewal of mouse ESCs. Cell Stem Cell 3:555–67

    PubMed  CAS  Google Scholar 

  • Engelberg JA, Datta A, Mostov KE, Hunt CA (2011) MDCK cystogenesis driven by cell stabilization within computational analogues. PLoS Comput Biol 7:e1002030

    PubMed  CAS  Google Scholar 

  • Escudero-Esparza A, Jiang WG, Martin TA (2011) The Claudin family and its role in cancer and metastasis. Front Biosci 16:1069–83

    PubMed  CAS  Google Scholar 

  • Fujita K, Katahira J, Horiguchi Y, Sonoda N, Furuse M, Tsukita S (2000) Clostridium perfringens enterotoxin binds to the second extracellular loop of claudin-3, a tight junction integral membrane protein. FEBS Lett 476:258–61

    PubMed  CAS  Google Scholar 

  • Gardner DK (2008) Dissection of culture media for embryos: the most important and less important components and characteristics. Reprod Fertil Dev 20:9–18

    PubMed  Google Scholar 

  • Gelber K, Tamura AN, Alarcon VB, Marikawa Y (2011) A potential use of embryonic stem cell medium for the in vitro culture of preimplantation embryos. J Assist Reprod Genet 28:659–68

    PubMed  Google Scholar 

  • Hara-Chikuma M, Sohara E, Rai T, Ikawa M, Okabe M, Sasaki S, Uchida S, Verkman AS (2005) Progressive adipocyte hypertrophy in aquaporin-7-deficient mice: adipocyte glycerol permeability as a novel regulator of fat accumulation. J Biol Chem 280:15493–6

    PubMed  CAS  Google Scholar 

  • Home P, Ray S, Dutta D, Bronshteyn I, Larson M, Paul S (2009) GATA3 is selectively expressed in the trophectoderm of peri-implantation embryo and directly regulates Cdx2 gene expression. J Biol Chem 284:28729–37

    PubMed  CAS  Google Scholar 

  • Hung TJ, Kemphues KJ (1999) PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos. Development 126:127–35

    PubMed  CAS  Google Scholar 

  • Jedrusik A, Bruce AW, Tan MH, Leong DE, Skamagki M, Yao M, Zernicka-Goetz M (2010) Maternally and zygotically provided Cdx2 have novel and critical roles for early development of the mouse embryo. Dev Biol 344:66–78

    PubMed  CAS  Google Scholar 

  • Jedrusik A, Parfitt DE, Guo G, Skamagki M, Grabarek JB, Johnson MH, Robson P, Zernicka-Goetz M (2008) Role of Cdx2 and cell polarity in cell allocation and specification of trophectoderm and inner cell mass in the mouse embryo. Genes Dev 22:2692–706

    PubMed  CAS  Google Scholar 

  • Johnson MH, Ziomek CA (1983) Cell interactions influence the fate of mouse blastomeres undergoing the transition from the 16- to the 32-cell stage. Dev Biol 95:211–18

    PubMed  CAS  Google Scholar 

  • Johnson MH (2009) From mouse egg to mouse embryo: polarities, axes, and tissues. Annu Rev Cell Dev Biol 25:483–512

    PubMed  CAS  Google Scholar 

  • Katahira J, Inoue N, Horiguchi Y, Matsuda M, Sugimoto N (1997) Molecular cloning and functional characterization of the receptor for Clostridium perfringens enterotoxin. J Cell Biol 136:1239–47

    PubMed  CAS  Google Scholar 

  • Katsuno T, Umeda K, Matsui T, Hata M, Tamura A, Itoh M, Takeuchi K, Fujimori T, Nabeshima Y, Noda T, Tsukita S, Tsukita S (2008) Deficiency of zonula occludens-1 causes embryonic lethal phenotype associated with defected yolk sac angiogenesis and apoptosis of embryonic cells. Mol Biol Cell 19:2465–75

    PubMed  CAS  Google Scholar 

  • Kawagishi R, Tahara M, Sawada K, Morishige K, Sakata M, Tasaka K, Murata Y (2004) Na+/H+ exchanger-3 is involved in mouse blastocyst formation. J Exp Zool A Comp Exp Biol 301:767–75

    PubMed  Google Scholar 

  • Keramari M, Razavi J, Ingman KA, Patsch C, Edenhofer F, Ward CM, Kimber SJ (2010) Sox2 is essential for formation of trophectoderm in the preimplantation embryo. PLoS One 5:e13952

    PubMed  Google Scholar 

  • Kidder GM (2002) Trophectoderm development and function: the roles of Na+/K+-ATPase subunit isoforms. Can J Physiol Pharmacol 80:110–5

    PubMed  CAS  Google Scholar 

  • Kidder GM, Watson AJ (2005) Roles of Na+, K + -ATPase in early development and trophectoderm differentiation. Semin Nephrol 25:352–5

    PubMed  CAS  Google Scholar 

  • Kitaura H, Tsujita M, Huber VJ, Kakita A, Shibuki K, Sakimura K, Kwee IL, Nakada T (2009) Activity-dependent glial swelling is impaired in aquaporin-4 knockout mice. Neurosci Res 64:208–12

    PubMed  CAS  Google Scholar 

  • Krane CM, Melvin JE, Nguyen HV, Richardson L, Towne JE, Doetschman T, Menon AG (2001) Salivary acinar cells from aquaporin 5-deficient mice have decreased membrane water permeability and altered cell volume regulation. J Biol Chem 276:23413–20

    PubMed  CAS  Google Scholar 

  • Kurotaki Y, Hatta K, Nakao K, Nabeshima Y, Fujimori T (2007) Blastocyst axis is specified independently of early cell lineage but aligns with the ZP shape. Science 316:719–23

    PubMed  CAS  Google Scholar 

  • Lawitts JA, Biggers JD (1993) Culture of preimplantation embryos. Methods Enzymol 225:153–64

    PubMed  CAS  Google Scholar 

  • Li J, Pan G, Cui K, Liu Y, Xu S, Pei D (2007) A dominant-negative form of mouse SOX2 induces trophectoderm differentiation and progressive polyploidy in mouse embryonic stem cells. J Biol Chem 282:19481–92

    PubMed  CAS  Google Scholar 

  • Lin SC, Wani MA, Whitsett JA, Wells JM (2010) Klf5 regulates lineage formation in the pre-implantation mouse embryo. Development 137:3953–63

    PubMed  CAS  Google Scholar 

  • Ma GT, Roth ME, Groskopf JC, Tsai FY, Orkin SH, Grosveld F, Engel JD, Linzer DI (1997a) GATA-2 and GATA-3 regulate trophoblast-specific gene expression in vivo. Development 124:907–14

    PubMed  CAS  Google Scholar 

  • Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1997b) Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J Clin Invest 100:957–62

    PubMed  CAS  Google Scholar 

  • Ma T, Song Y, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1999) Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J Biol Chem 274:20071–4

    PubMed  CAS  Google Scholar 

  • Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1998) Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J Biol Chem 273:4296–9

    PubMed  CAS  Google Scholar 

  • Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (2000) Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci USA 97:4386–91

    PubMed  CAS  Google Scholar 

  • MacPhee DJ, Jones DH, Barr KJ, Betts DH, Watson AJ, Kidder GM (2000) Differential involvement of Na+, K + -ATPase isozymes in preimplantation development of the mouse. Dev Biol 222:486–98

    PubMed  CAS  Google Scholar 

  • Madan P, Rose K, Watson AJ (2007) Na+/K+-ATPase beta1 subunit expression is required for blastocyst formation and normal assembly of trophectoderm tight junction-associated proteins. J Biol Chem 282:12127–34

    PubMed  CAS  Google Scholar 

  • Manejwala FM, Cragoe EJ Jr, Schultz RM (1989) Blastocoel expansion in the preimplantation mouse embryo: role of extracellular sodium and chloride and possible apical routes of their entry. Dev Biol 133:210–20

    PubMed  CAS  Google Scholar 

  • Martin-Belmonte F, Yu W, Rodríguez-Fraticelli AE, Ewald AJ, Werb Z, Alonso MA, Mostov K (2008) Cell-polarity dynamics controls the mechanism of lumen formation in epithelial morphogenesis. Curr Biol 18:507–13

    PubMed  CAS  Google Scholar 

  • Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi H, Okuda A, Matoba R, Sharov AA, Ko MS, Niwa H (2007) Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9:625–35

    PubMed  CAS  Google Scholar 

  • McConnell J, Petrie L, Stennard F, Ryan K, Nichols J (2005) Eomesodermin is expressed in mouse oocytes and pre-implantation embryos. Mol Reprod Dev 71:399–404

    PubMed  CAS  Google Scholar 

  • McDole K, Xiong Y, Iglesias PA, Zheng Y (2011) Lineage mapping the pre-implantation mouse embryo by two-photon microscopy, new insights into the segregation of cell fates. Dev Biol 355:239–49

    PubMed  CAS  Google Scholar 

  • Morishita Y, Matsuzaki T, Hara-chikuma M, Andoo A, Shimono M, Matsuki A, Kobayashi K, Ikeda M, Yamamoto T, Verkman A, Kusano E, Ookawara S, Takata K, Sasaki S, Ishibashi K (2005) Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol Cell Biol 25:7770–9

    PubMed  CAS  Google Scholar 

  • Moriwaki K, Tsukita S, Furuse M (2007) Tight junctions containing claudin 4 and 6 are essential for blastocyst formation in preimplantation mouse embryos. Dev Biol 312:509–22

    PubMed  CAS  Google Scholar 

  • Morris SA, Teo RT, Li H, Robson P, Glover DM, Zernicka-Goetz M (2010) Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. Proc Natl Acad Sci USA 107:6364–9

    PubMed  CAS  Google Scholar 

  • Motosugi N, Bauer T, Polanski Z, Solter D, Hiiragi T (2005) Polarity of the mouse embryo is established at blastocyst and is not prepatterned. Genes Dev 19:1081–92

    PubMed  CAS  Google Scholar 

  • Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M, Ralston A, Yabuta N, Hirahara S, Stephenson RO, Ogonuki N, Makita R, Kurihara H, Morin-Kensicki EM, Nojima H, Rossant J, Nakao K, Niwa H, Sasaki H (2009) The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16:398–410

    PubMed  CAS  Google Scholar 

  • Nishioka N, Yamamoto S, Kiyonari H, Sato H, Sawada A, Ota M, Nakao K, Sasaki H (2008) Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev 125:270–83

    PubMed  CAS  Google Scholar 

  • Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K, Yagi R, Rossant J (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123:917–29

    PubMed  CAS  Google Scholar 

  • Offenberg H, Barcroft LC, Caveney A, Viuff D, Thomsen PD, Watson AJ (2000) mRNAs encoding aquaporins are present during murine preimplantation development. Mol Reprod Dev 57:323–30

    PubMed  CAS  Google Scholar 

  • Ohta E, Itoh T, Nemoto T, Kumagai J, Ko SB, Ishibashi K, Ohno M, Uchida K, Ohta A, Sohara E, Uchida S, Sasaki S, Rai T (2009) Pancreas-specific aquaporin 12 null mice showed increased susceptibility to caerulein-induced acute pancreatitis. Am J Physiol Cell Physiol 297:C1368–78

    PubMed  CAS  Google Scholar 

  • Pandolfi PP, Roth ME, Karis A, Leonard MW, Dzierzak E, Grosveld FG, Engel JD, Lindenbaum MH (1995) Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet 11:40–4

    PubMed  CAS  Google Scholar 

  • Plusa B, Frankenberg S, Chalmers A, Hadjantonakis AK, Moore CA, Papalopulu N, Papaioannou VE, Glover DM, Zernicka-Goetz M (2005) Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. J Cell Sci 118:505–15

    PubMed  CAS  Google Scholar 

  • Rajasekaran SA, Rajasekaran AK (2009) Na, K-ATPase and epithelial tight junctions. Front Biosci 14:2130–48

    PubMed  CAS  Google Scholar 

  • Ralston A, Cox BJ, Nishioka N, Sasaki H, Chea E, Rugg-Gunn P, Guo G, Robson P, Draper JS, Rossant J (2010) Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development 137:395–403

    PubMed  CAS  Google Scholar 

  • Ralston A, Rossant J (2008) Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev Biol 313:614–29

    PubMed  CAS  Google Scholar 

  • Rojek A, Füchtbauer EM, Kwon TH, Frøkiaer J, Nielsen S (2006) Severe urinary concentrating defect in renal collecting duct-selective AQP2 conditional-knockout mice. Proc Natl Acad Sci USA 103:6037–42

    PubMed  CAS  Google Scholar 

  • Rojek AM, Skowronski MT, Füchtbauer EM, Füchtbauer AC, Fenton RA, Agre P, Frøkiaer J, Nielsen S (2007) Defective glycerol metabolism in aquaporin 9 (AQP9) knockout mice. Proc Natl Acad Sci USA 104:3609–14

    PubMed  CAS  Google Scholar 

  • Rossant J, Vijh KM (1980) Ability of outside cells from preimplantation mouse embryos to form inner cell mass derivatives. Dev Biol 76:475–82

    PubMed  CAS  Google Scholar 

  • Russ AP, Wattler S, Colledge WH, Aparicio SA, Carlton MB, Pearce JJ, Barton SC, Surani MA, Ryan K, Nehls MC, Wilson V, Evans MJ (2000) Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature 404:95–9

    PubMed  CAS  Google Scholar 

  • Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11:4131–42

    PubMed  CAS  Google Scholar 

  • Schluter MA, Pfarr CS, Pieczynski J, Whiteman EL, Hurd TW, Fan S, Liu CJ, Margolis B (2009) Trafficking of Crumbs3 during cytokinesis is crucial for lumen formation. Mol Biol Cell 20:4652–63

    PubMed  CAS  Google Scholar 

  • Schultheis PJ, Clarke LL, Meneton P, Harline M, Boivin GP, Stemmermann G, Duffy JJ, Doetschman T, Miller ML, Shull GE (1998) Targeted disruption of the murine Na+/H+ exchanger isoform 2 gene causes reduced viability of gastric parietal cells and loss of net acid secretion. J Clin Invest 101:1243–53

    PubMed  CAS  Google Scholar 

  • Sheth B, Nowak RL, Anderson R, Kwong WY, Papenbrock T, Fleming TP (2008) Tight junction protein ZO-2 expression and relative function of ZO-1 and ZO-2 during mouse blastocyst formation. Exp Cell Res 314:3356–68

    PubMed  CAS  Google Scholar 

  • Sohara E, Rai T, Miyazaki J, Verkman AS, Sasaki S, Uchida S (2005) Defective water and glycerol transport in the proximal tubules of AQP7 knockout mice. Am J Physiol Renal Physiol 289:F1195–200

    PubMed  CAS  Google Scholar 

  • Sonoda N, Furuse M, Sasaki H, Yonemura S, Katahira J, Horiguchi Y, Tsukita S (1999) Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: Evidence for direct involvement of claudins in tight junction barrier. J Cell Biol 147:195–204

    PubMed  Google Scholar 

  • Stephenson RO, Yamanaka Y, Rossant J (2010) Disorganized epithelial polarity and excess trophectoderm cell fate in preimplantation embryos lacking E-cadherin. Development 137:3383–91

    PubMed  CAS  Google Scholar 

  • Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132:2093–102

    PubMed  CAS  Google Scholar 

  • Summers MC, Biggers JD (2003) Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum Reprod Update 9:557–82

    PubMed  CAS  Google Scholar 

  • Sun QY, Liu K, Kikuchi K (2008) Oocyte-specific knockout: a novel in vivo approach for studying gene functions during folliculogenesis, oocyte maturation, fertilization, and embryogenesis. Biol Reprod 79:1014–20

    PubMed  CAS  Google Scholar 

  • Suwinska A, Czolowska R, Ozdzenski W, Tarkowski AK (2008) Blastomeres of the mouse embryo lose totipotency after the fifth cleavage division: expression of Cdx2 and Oct4 and developmental potential of inner and outer blastomeres of 16- and 32-cell embryos. Dev Biol 322:133–44

    PubMed  CAS  Google Scholar 

  • Thrane AS, Rappold PM, Fujita T, Torres A, Bekar LK, Takano T, Peng W, Wang F, Thrane VR, Enger R, Haj-Yasein NN, Skare Ø, Holen T, Klungland A, Ottersen OP, Nedergaard M, Nagelhus EA (2011) Critical role of aquaporin-4 (AQP4) in astrocytic Ca2+ signaling events elicited by cerebral edema. Proc Natl Acad Sci USA 108:846–51

    PubMed  CAS  Google Scholar 

  • Ting CN, Olson MC, Barton KP, Leiden JM (1996) Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384:474–8

    PubMed  CAS  Google Scholar 

  • Tokhtaeva E, Sachs G, Souda P, Bassilian S, Whitelegge JP, Shoshani L, Vagin O (2011) Epithelial junctions depend on intercellular trans-interactions between the Na, K-ATPase β subunits. J Biol Chem 286:25801–12

    PubMed  CAS  Google Scholar 

  • Vajta G, Rienzi L, Cobo A, Yovich J (2010) Embryo culture: can we perform better than nature? Reprod Biomed Online 20:453–69

    PubMed  Google Scholar 

  • Vinot S, Le T, Ohno S, Pawson T, Maro B, Louvet-Vallée S (2005) Asymmetric distribution of PAR proteins in the mouse embryo begins at the 8-cell stage during compaction. Dev Biol 282:307–19

    PubMed  CAS  Google Scholar 

  • Wang AZ, Ojakian GK, Nelson WJ (1990) Steps in the morphogenesis of a polarized epithelium. I. uncoupling the roles of cell-cell and cell-substratum contact in establishing plasma membrane polarity in multicellular epithelial (MDCK) cysts. J Cell Sci 95:137–51

    PubMed  Google Scholar 

  • Wang H, Ding T, Brown N, Yamamoto Y, Prince LS, Reese J, Paria BC (2008) Zonula occludens-1 (ZO-1) is involved in morula to blastocyst transformation in the mouse. Dev Biol 318:112–25

    PubMed  CAS  Google Scholar 

  • Wang K, Sengupta S, Magnani L, Wilson CA, Henry RW, Knott JG (2010) Brg1 is required for Cdx2-mediated repression of Oct4 expression in mouse blastocysts. PLoS One 5:e10622

    PubMed  Google Scholar 

  • Watson AJ, Barcroft LC (2001) Regulation of blastocyst formation. Front Biosci 6:D708–30

    PubMed  CAS  Google Scholar 

  • Watson AJ (1992) The cell biology of blastocyst development. Mol Reprod Dev 33:492–504

    PubMed  CAS  Google Scholar 

  • Watts JL, Etemad-Moghadam B, Guo S, Boyd L, Draper BW, Mello CC, Priess JR, Kemphues KJ (1996) par-6, a gene involved in the establishment of asymmetry in early C. elegans embryos, mediates the asymmetric localization of PAR-3. Development 122:3133–40

    PubMed  CAS  Google Scholar 

  • Wiley LM (1984) Cavitation in the mouse preimplantation embryo: Na/K-ATPase and the origin of nascent blastocoele fluid. Dev Biol 105:330–42

    PubMed  CAS  Google Scholar 

  • Wu G, Gentile L, Fuchikami T, Sutter J, Psathaki K, Esteves TC, Araúzo-Bravo MJ, Ortmeier C, Verberk G, Abe K, Scholer HR (2010) Initiation of trophectoderm lineage specification in mouse embryos is independent of Cdx2. Development 137:4159–69

    PubMed  CAS  Google Scholar 

  • Xu J, Kausalya PJ, Phua DC, Ali SM, Hossain Z, Hunziker W (2008) Early embryonic lethality of mice lacking ZO-2, but Not ZO-3, reveals critical and nonredundant roles for individual zonula occludens proteins in mammalian development. Mol Cell Biol 28:1669–78

    PubMed  CAS  Google Scholar 

  • Yagi R, Kohn MJ, Karavanova I, Kaneko KJ, Vullhorst D, DePamphilis ML, Buonanno A (2007) Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134:3827–36

    PubMed  CAS  Google Scholar 

  • Yamanaka Y, Ralston A, Stephenson RO, Rossant J (2006) Cell and molecular regulation of the mouse blastocyst. Dev Dyn 235:2301–14

    PubMed  CAS  Google Scholar 

  • Yamanaka Y, Lanner F, Rossant J (2010) FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137:715–24

    PubMed  CAS  Google Scholar 

  • Yang B, Song Y, Zhao D, Verkman AS (2005) Phenotype analysis of aquaporin-8 null mice. Am J Physiol Cell Physiol 288:C1161–70

    PubMed  CAS  Google Scholar 

  • Yoshihama Y, Sasaki K, Horikoshi Y, Suzuki A, Ohtsuka T, Hakuno F, Takahashi S, Ohno S, Chida K (2011) KIBRA suppresses apical exocytosis through inhibition of aPKC kinase activity in epithelial cells. Curr Biol 21:705–11

    PubMed  CAS  Google Scholar 

  • Ziomek CA, Johnson MH, Handyside AH (1982) The developmental potential of mouse 16-cell blastomeres. J Exp Zool 221:345–55

    PubMed  CAS  Google Scholar 

  • Ziomek CA, Johnson MH (1982) The roles of phenotype and position in guiding the fate of 16-cell mouse blastomeres. Dev Biol 91:440–7

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Figures used in this chapter were obtained through the authors’ research, which is supported by NIH grant P20RR024206 and 8P20GM103457.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Marikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marikawa, Y., Alarcon, V.B. (2012). Creation of Trophectoderm, the First Epithelium, in Mouse Preimplantation Development. In: Kubiak, J. (eds) Mouse Development. Results and Problems in Cell Differentiation, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30406-4_9

Download citation

Publish with us

Policies and ethics