Skip to main content

Differentiation of Definitive Endoderm from Mouse Embryonic Stem Cells

  • Chapter
  • First Online:
Mouse Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 55))

Abstract

Efficient production of definitive endoderm from embryonic stem (ES) cells opens doors to the possibilities of differentiation of endoderm-derived tissues such as the intestines, pancreas, and liver that could address the needs of people with chronic diseases involving these organs. The lessons learned from developmental biology have contributed significantly to in vitro differentiation of definitive endoderm. Gastrulation, a process that results in the production of all three embryonic germ cell layers, definitive endoderm, mesoderm, and ectoderm, is an important step in embryonic development. Gastrulation occurs as a result of the events that are orchestrated by the signaling pathways involving Nodal, FGF, Wnt, and BMP. Understanding these signaling pathways has led to the introduction of key ingredients such as Activin A, FGF, Wnt, and BMP to the differentiation protocols that have been able to produce definitive endoderm from ES cells. Efficient production of definitive endoderm needs to meet the specific criteria that include (a) increase in the production of markers of definitive endoderm such as Sox 17, FOXA2, GSC, and Mixl1; (b) decrease in the production of markers of primitive/visceral/parietal endoderm, Sox 7 and OCT4; and (c) decrease in the mesoderm markers (Brachyury, MEOX) and ectoderm markers (Sox1 and ZIC1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ang SL, Wierda A, Wong D, Stevens KA, Cascio S, Rossant J, Zaret KS (1993) The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development 119:1301–1315

    PubMed  CAS  Google Scholar 

  • Arce L, Yokoyama NN, Waterman ML (2006) Diversity of LEF/TCF action in development and disease. Oncogene 25:7492–7504

    Article  PubMed  CAS  Google Scholar 

  • Ben-Haim N, Lu C, Guzman-Ayala M, Pescatore L, Mesnard D, Bischofberger M, Naef F, Robertson EJ, Constam DB (2006) The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4. Dev Cell 11:313–323

    Article  PubMed  CAS  Google Scholar 

  • Blum M, Gaunt SJ, Cho KW, Steinbeisser H, Blumberg B, Bittner D, De Robertis EM (1992) Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell 69:1097–1106

    Article  PubMed  CAS  Google Scholar 

  • Bone HK, Nelson AS, Goldring CE, Tosh D, Welham MJ (2011) A novel chemically directed route for the generation of definitive endoderm from human embryonic stem cells based on inhibition of GSK-3. J Cell Sci 124:1992–2000

    Article  PubMed  CAS  Google Scholar 

  • Borowiak M, Maehr R, Chen S, Chen AE, Tang W, Fox JL, Schreiber SL, Melton DA (2009) Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 4:348–358

    Article  PubMed  CAS  Google Scholar 

  • Candia AF, Wright CV (1996) Differential localization of Mox-1 and Mox-2 proteins indicates distinct roles during development. Int J Dev Biol 40:1179–1184

    PubMed  CAS  Google Scholar 

  • Candia AF, Hu J, Crosby J, Lalley PA, Noden D, Nadeau JH, Wright CV (1992) Mox-1 and Mox-2 define a novel homeobox gene subfamily and are differentially expressed during early mesodermal patterning in mouse embryos. Development 116:1123–1136

    PubMed  CAS  Google Scholar 

  • Chen C, Ware SM, Sato A, Houston-Hawkins DE, Habas R, Matzuk MM, Shen MM, Brown CW (2006) The Vg1-related protein Gdf3 acts in a Nodal signaling pathway in the pre-gastrulation mouse embryo. Development 133:319–329

    Article  PubMed  CAS  Google Scholar 

  • Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    Article  PubMed  CAS  Google Scholar 

  • D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23:1534–1541

    Article  PubMed  Google Scholar 

  • D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401

    Article  PubMed  Google Scholar 

  • Dush MK, Martin GR (1992) Analysis of mouse Evx genes: Evx-1 displays graded expression in the primitive streak. Dev Biol 151:273–287

    Article  PubMed  CAS  Google Scholar 

  • Feng XH, Derynck R (2005) Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 21:659–693

    Article  PubMed  CAS  Google Scholar 

  • Forlani S, Lawson KA, Deschamps J (2003) Acquisition of Hox codes during gastrulation and axial elongation in the mouse embryo. Development 130:3807–3819

    Article  PubMed  CAS  Google Scholar 

  • Futaki S, Hayashi Y, Emoto T, Weber CN, Sekiguchi K (2004) Sox7 plays crucial roles in parietal endoderm differentiation in F9 embryonal carcinoma cells through regulating Gata-4 and Gata-6 expression. Mol Cell Biol 24:10492–10503

    Article  PubMed  CAS  Google Scholar 

  • Gadue P, Huber TL, Paddison PJ, Keller GM (2006) Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci U S A 103:16806–16811

    Article  PubMed  CAS  Google Scholar 

  • Gouon-Evans V, Boussemart L, Gadue P, Nierhoff D, Koehler CI, Kubo A, Shafritz DA, Keller G (2006) BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol 24:1402–1411

    Article  PubMed  CAS  Google Scholar 

  • Haegel H, Larue L, Ohsugi M, Fedorov L, Herrenknecht K, Kemler R (1995) Lack of beta-catenin affects mouse development at gastrulation. Development 121:3529–3537

    PubMed  CAS  Google Scholar 

  • Hansson M, Olesen DR, Peterslund JM, Engberg N, Kahn M, Winzi M, Klein T, Maddox-Hyttel P, Serup P (2009) A late requirement for Wnt and FGF signaling during activin-induced formation of foregut endoderm from mouse embryonic stem cells. Dev Biol 330:286–304

    Article  PubMed  CAS  Google Scholar 

  • Hart AH, Hartley L, Sourris K, Stadler ES, Li R, Stanley EG, Tam PP, Elefanty AG, Robb L (2002) Mixl1 is required for axial mesendoderm morphogenesis and patterning in the murine embryo. Development 129:3597–3608

    PubMed  CAS  Google Scholar 

  • Hay DC, Fletcher J, Payne C, Terrace JD, Gallagher RC, Snoeys J, Black JR, Wojtacha D, Samuel K, Hannoun Z et al (2008) Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling. Proc Natl Acad Sci U S A 105:12301–12306

    Article  PubMed  CAS  Google Scholar 

  • Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471

    Article  PubMed  CAS  Google Scholar 

  • Itoh S, ten Dijke P (2007) Negative regulation of TGF-beta receptor/Smad signal transduction. Curr Opin Cell Biol 19:176–184

    Article  PubMed  CAS  Google Scholar 

  • Jackson SA, Schiesser J, Stanley EG, Elefanty AG (2010) Differentiating embryonic stem cells pass through ‘temporal windows’ that mark responsiveness to exogenous and paracrine mesendoderm inducing signals. PLoS One 5:e10706

    Article  PubMed  Google Scholar 

  • Jeong GS, Jun Y, Song JH, Shin SH, Lee SH (2011) Meniscus induced self organization of multiple deep concave wells in a microchannel for embryoid bodies generation. Lab Chip 12:159–166

    Article  PubMed  Google Scholar 

  • Kanai-Azuma M, Kanai Y, Gad JM, Tajima Y, Taya C, Kurohmaru M, Sanai Y, Yonekawa H, Yazaki K, Tam PP et al (2002) Depletion of definitive gut endoderm in Sox17-null mutant mice. Development 129:2367–2379

    PubMed  CAS  Google Scholar 

  • Kim PT, Hoffman BG, Plesner A, Helgason CD, Verchere CB, Chung SW, Warnock GL, Mui AL, Ong CJ (2010) Differentiation of mouse embryonic stem cells into endoderm without embryoid body formation. PLoS One 5:e14146

    Article  PubMed  CAS  Google Scholar 

  • Kinder SJ, Tsang TE, Quinlan GA, Hadjantonakis AK, Nagy A, Tam PP (1999) The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development 126:4691–4701

    PubMed  CAS  Google Scholar 

  • Kinder SJ, Tsang TE, Wakamiya M, Sasaki H, Behringer RR, Nagy A, Tam PP (2001) The organizer of the mouse gastrula is composed of a dynamic population of progenitor cells for the axial mesoderm. Development 128:3623–3634

    PubMed  CAS  Google Scholar 

  • Kispert A, Herrmann BG (1994) Immunohistochemical analysis of the Brachyury protein in wild-type and mutant mouse embryos. Dev Biol 161:179–193

    Article  PubMed  Google Scholar 

  • Kubo A, Shinozaki K, Shannon JM, Kouskoff V, Kennedy M, Woo S, Fehling HJ, Keller G (2004) Development of definitive endoderm from embryonic stem cells in culture. Development 131:1651–1662

    Article  PubMed  CAS  Google Scholar 

  • Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT (2000) The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 16:279–283

    Article  PubMed  CAS  Google Scholar 

  • Kimura W et al (2006) Fate and plasticity of the endoderm in the early chick embryo. Dev Biol 289(2):283–295

    Article  PubMed  CAS  Google Scholar 

  • Kunisada Y, Tsubooka-Yamazoe N, Shoji M, Hosoya M (2012) Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Res 8(2):274–284

    Article  PubMed  CAS  Google Scholar 

  • Lawson KA, Pedersen RA (1987) Cell fate, morphogenetic movement and population kinetics of embryonic endoderm at the time of germ layer formation in the mouse. Development 101(3):627–652

    PubMed  CAS  Google Scholar 

  • Lawson A, Schoenwolf GC (2003) Epiblast and primitive-streak origins of the endoderm in the gastrulating chick embryo. Development 130(15):3491–3501

    Article  PubMed  CAS  Google Scholar 

  • Li F, He Z, Li Y, Liu P, Chen F, Wang M, Zhu H, Ding X, Wangensteen KJ, Hu Y et al (2011) Combined activin A/LiCl/Noggin treatment improves production of mouse embryonic stem cell-derived definitive endoderm cells. J Cell Biochem 112:1022–1034

    Article  PubMed  CAS  Google Scholar 

  • Lindsley RC, Gill JG, Kyba M, Murphy TL, Murphy KM (2006) Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm. Development 133:3787–3796

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR, Bradley A (1999) Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22:361–365

    Article  PubMed  CAS  Google Scholar 

  • Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  PubMed  CAS  Google Scholar 

  • McGrath KE, Koniski AD, Maltby KM, McGann JK, Palis J (1999) Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol 213:442–456

    Article  PubMed  CAS  Google Scholar 

  • Mohr JC, Zhang J, Azarin SM, Soerens AG, de Pablo JJ, Thomson JA, Lyons GE, Palecek SP, Kamp TJ (2010) The microwell control of embryoid body size in order to regulate cardiac differentiation of human embryonic stem cells. Biomaterials 31:1885–1893

    Article  PubMed  CAS  Google Scholar 

  • Monaghan AP, Kaestner KH, Grau E, Schutz G (1993) Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3 alpha, beta and gamma genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development 119:567–578

    PubMed  CAS  Google Scholar 

  • Moon RT (2005) Wnt/beta-catenin pathway. Sci STKE 2005(217):cm1

    Article  PubMed  Google Scholar 

  • Moon RT, Brown JD, Torres M (1997) WNTs modulate cell fate and behavior during vertebrate development. Trends Genet 13:157–162

    Article  PubMed  CAS  Google Scholar 

  • Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680

    Article  PubMed  CAS  Google Scholar 

  • Nagai T, Aruga J, Takada S, Gunther T, Sporle R, Schughart K, Mikoshiba K (1997) The expression of the mouse Zic1, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev Biol 182:299–313

    Article  PubMed  CAS  Google Scholar 

  • Nateri AS, Spencer-Dene B, Behrens A (2005) Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature 437:281–285

    Article  PubMed  CAS  Google Scholar 

  • Niswander L, Martin GR (1992) Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114:755–768

    PubMed  CAS  Google Scholar 

  • Nostro MC, Cheng X, Keller GM, Gadue P (2008) Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood. Cell Stem Cell 2:60–71

    Article  PubMed  CAS  Google Scholar 

  • O’Farrell PH, Stumpff J, Su TT (2004) Embryonic cleavage cycles: how is a mouse like a fly? Curr Biol 14:R35–R45

    PubMed  Google Scholar 

  • Payne C, King J, Hay D (2011) The role of activin/nodal and Wnt signaling in endoderm formation. Vitam Horm 85:207–216

    Article  PubMed  CAS  Google Scholar 

  • Pearce JJ, Evans MJ (1999) Mml, a mouse Mix-like gene expressed in the primitive streak. Mech Dev 87:189–192

    Article  PubMed  CAS  Google Scholar 

  • Pera MF, Andrade J, Houssami S, Reubinoff B, Trounson A, Stanley EG, Ward-van Oostwaard D, Mummery C (2004) Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci 117:1269–1280

    Article  PubMed  CAS  Google Scholar 

  • Pesce M, Scholer HR (2001) Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 19:271–278

    Article  PubMed  CAS  Google Scholar 

  • Pevny LH, Sockanathan S, Placzek M, Lovell-Badge R (1998) A role for SOX1 in neural determination. Development 125:1967–1978

    PubMed  CAS  Google Scholar 

  • Rosner MH, Vigano MA, Ozato K, Timmons PM, Poirier F, Rigby PW, Staudt LM (1990) A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345:686–692

    Article  PubMed  CAS  Google Scholar 

  • Rossant J (2004) Lineage development and polar asymmetries in the peri-implantation mouse blastocyst. Semin Cell Dev Biol 15:573–581

    Article  PubMed  Google Scholar 

  • Sachlos E, Auguste DT (2008) Embryoid body morphology influences diffusive transport of inductive biochemicals: a strategy for stem cell differentiation. Biomaterials 29:4471–4480

    Article  PubMed  CAS  Google Scholar 

  • Sasaki H, Hogan BL (1993) Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 118:47–59

    PubMed  CAS  Google Scholar 

  • Schier AF (2003) Nodal signaling in vertebrate development. Annu Rev Cell Dev Biol 19:589–621

    Article  PubMed  CAS  Google Scholar 

  • Shen MM (2007) Nodal signaling: developmental roles and regulation. Development 134:1023–1034

    Article  PubMed  CAS  Google Scholar 

  • Sherwood RI, Maehr R, Mazzoni EO, Melton DA (2011) Wnt signaling specifies and patterns intestinal endoderm. Mech Dev 128:387–400

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Hou L, Tang F, Jiang W, Wang P, Ding M, Deng H (2005) Inducing embryonic stem cells to differentiate into pancreatic beta cells by a novel three-step approach with activin A and all-trans retinoic acid. Stem Cells 23:656–662

    Article  PubMed  CAS  Google Scholar 

  • Shim JH, Kim SE, Woo DH, Kim SK, Oh CH, McKay R, Kim JH (2007) Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia 50:1228–1238

    Article  PubMed  CAS  Google Scholar 

  • Shiraki N, Yoshida T, Araki K, Umezawa A, Higuchi Y, Goto H, Kume K, Kume S (2008) Guided differentiation of embryonic stem cells into Pdx1-expressing regional-specific definitive endoderm. Stem Cells 26:874–885

    Article  PubMed  CAS  Google Scholar 

  • Solnica-Krezel L (2005) Conserved patterns of cell movements during vertebrate gastrulation. Curr Biol 15:R213–R228

    Article  PubMed  CAS  Google Scholar 

  • Spemann H (1938) Embryonic Development and Induction. Yale University Press, New Haven, CT

    Google Scholar 

  • Tada S, Era T, Furusawa C, Sakurai H, Nishikawa S, Kinoshita M, Nakao K, Chiba T (2005) Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 132:4363–4374

    Article  PubMed  CAS  Google Scholar 

  • Tam PP, Behringer RR (1997) Mouse gastrulation: the formation of a mammalian body plan. Mech Dev 68:3–25

    Article  PubMed  CAS  Google Scholar 

  • Tam PP, Loebel DA (2007) Gene function in mouse embryogenesis: get set for gastrulation. Nat Rev Genet 8:368–381

    Article  PubMed  CAS  Google Scholar 

  • ten Berge D, Koole W, Fuerer C, Fish M, Eroglu E, Nusse R (2008) Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell 3:508–518

    Article  PubMed  Google Scholar 

  • Topol L, Jiang X, Choi H, Garrett-Beal L, Carolan PJ, Yang Y (2003) Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol 162:899–908

    Article  PubMed  CAS  Google Scholar 

  • Torisawa YS, Chueh BH, Huh D, Ramamurthy P, Roth TM, Barald KF, Takayama S (2007) Efficient formation of uniform-sized embryoid bodies using a compartmentalized microchannel device. Lab Chip 7:770–776

    Article  PubMed  CAS  Google Scholar 

  • Vallier L, Touboul T, Chng Z, Brimpari M, Hannan N, Millan E, Smithers LE, Trotter M, Rugg-Gunn P, Weber A et al (2009) Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLoS One 4:e6082

    Article  PubMed  Google Scholar 

  • Verheijen MH, Defize LH (1999) Signals governing extraembryonic endoderm formation in the mouse: involvement of the type 1 parathyroid hormone-related peptide (PTHrP) receptor, p21Ras and cell adhesion molecules. Int J Dev Biol 43:711–721

    PubMed  CAS  Google Scholar 

  • Westfall TA, Brimeyer R, Twedt J, Gladon J, Olberding A, Furutani-Seiki M, Slusarski DC (2003) Wnt-5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/beta-catenin activity. J Cell Biol 162:889–898

    Article  PubMed  CAS  Google Scholar 

  • Whitman M (2001) Nodal signaling in early vertebrate embryos: themes and variations. Dev Cell 1:605–617

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson DG, Bhatt S, Herrmann BG (1990) Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343:657–659

    Article  PubMed  CAS  Google Scholar 

  • Xu RH, Chen X, Li DS, Li R, Addicks GC, Glennon C, Zwaka TP, Thomson JA (2002) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20:1261–1264

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Sridharan B, Wang S, Gurkan UA, Syverud B, Demirci U (2011a) Embryonic stem cell bioprinting for uniform and controlled size embryoid body formation. Biomicrofluidics 5:22207

    Article  PubMed  Google Scholar 

  • Xu X, Browning VL, Odorico JS (2011b) Activin, BMP and FGF pathways cooperate to promote endoderm and pancreatic lineage cell differentiation from human embryonic stem cells. Mech Dev 128(7–10):412–427

    Article  PubMed  Google Scholar 

  • Yasunaga M, Tada S, Torikai-Nishikawa S, Nakano Y, Okada M, Jakt LM, Nishikawa S, Chiba T, Era T (2005) Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol 23:1542–1550

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Wurdak H, Wang J, Lyssiotis CA, Peters EC, Cho CY, Wu X, Schultz PG (2009) A small molecule primes embryonic stem cells for differentiation. Cell Stem Cell 4:416–426

    Article  PubMed  CAS  Google Scholar 

  • Zorn AM, Wells JM (2009) Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol 25:221–251

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Ong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, P.T.W., Ong, C.J. (2012). Differentiation of Definitive Endoderm from Mouse Embryonic Stem Cells. In: Kubiak, J. (eds) Mouse Development. Results and Problems in Cell Differentiation, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30406-4_17

Download citation

Publish with us

Policies and ethics