Skip to main content

Cellular Reprogramming During Mouse Development

  • Chapter
  • First Online:
Mouse Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 55))

  • 4023 Accesses

Abstract

States of terminal cell differentiation are often considered to be fixed. There are examples, however, in which cells of one type can be converted to a completely different cell type. The process whereby one cell type can be converted to another is referred to as cellular reprogramming. Cellular reprogramming is also referred to in the literature as transdifferentiation (or the direct conversion of one cell type to another without dedifferentiation to an intermediate cell type). Where the conversion between cell types occurs in the developing embryo, the process is referred to as transdetermination. Herein we examine some well-defined examples of transdetermination. Defining the molecular and cellular basis of transdetermination will help us to understand the normal developmental biology of the cells that interconvert, as well as identifying key regulatory transcription factors (master switch genes) that may be important for the reprogramming of stem cells. Harnessing the therapeutic potential of reprogramming and master genes is an important goal in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alagille D, Estrada A, Hadchouel M, Gautier M, Odievre M, Dommergues JP (1987) Syndromic paucity of interlobular bile ducts (Alagille syndrome or arteriohepatic dysplasia): review of 80 cases. J Pediatr 110:195ā€“200

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Apelqvist A, Li H, Sommer L, Beatus P, Anderson DJ, Honjo T, Hrabe de Angelis M, Lendahl U, Edlund H (1999) Notch signalling controls pancreatic cell differentiation. Nature 400:877ā€“881

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Barbera M, Fitzgerald RC (2010) Cellular origin of Barrettā€™s metaplasia and oesophageal stem cells. Biochem Soc Trans 38:370ā€“373

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Beck F, Chawengsaksophak K, Waring P, Playford RJ, Furness JB (1999) Reprogramming of intestinal differentiation and intercalary regeneration in Cdx2 mutant mice. Proc Natl Acad Sci USA 96:7318ā€“7323

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Chen SP, Zhou B, Willis BC, Sandoval AJ, Liebler JM, Kim KJ, Ann DK, Crandall ED, Borok Z (2005) Effects of transdifferentiation and EGF on claudin isoform expression in alveolar epithelial cells. J Appl Physiol 98:322ā€“328

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Cohen SM (1993) Imaginal disc development. In: Martinez-Arias A (ed) The Drosophila Melanogaster. Cold Spring Harbor Press, Cold Spring Harbor

    Google ScholarĀ 

  • Colleypriest BJ, Palmer RM, Ward SG, Tosh D (2009a) Cdx genes, inflammation and the pathogenesis of Barrettā€™s metaplasia. Trends Mol Med 15:313ā€“322

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Colleypriest BJ, Ward SG, Tosh D (2009b) How does inflammation cause Barrettā€™s metaplasia? Curr Opin Pharmacol 9:721ā€“726

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Dobbs LG, Williams MC, Gonzalez R (1988) Monoclonal antibodies specific to apical surfaces of rat alveolar type I cells bind to surfaces of cultured, but not freshly isolated, type II cells. Biochim Biophys Acta 970:146ā€“156

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Elliott WM, Youson JH (1993) Development of the adult endocrine pancreas during metamorphosis in the sea lamprey, Petromyzon marinus L. II. Electron microscopy and immunocytochemistry. Anat Rec 237:271ā€“290

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Foster CD, Varghese LS, Skalina RB, Gonzales LW, Guttentag SH (2007) In vitro transdifferentiation of human fetal type II cells toward a type I-like cell. Pediatr Res 61:404ā€“409

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Fuchs S, Hollins AJ, Laue M, Schaefer UF, Roemer K, Gumbleton M, Lehr CM (2003) Differentiation of human alveolar epithelial cells in primary culture: morphological characterization and synthesis of caveolin-1 and surfactant protein-C. Cell Tissue Res 311:31ā€“45

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Gonzales LW, Angampalli S, Guttentag SH, Beers MF, Feinstein SI, Matlapudi A, Ballard PL (2001) Maintenance of differentiated function of the surfactant system in human fetal lung type II epithelial cells cultured on plastic. Pediatr Pathol Mol Med 20:387ā€“412

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Gonzales LW, Guttentag SH, Wade KC, Postle AD, Ballard PL (2002) Differentiation of human pulmonary type II cells in vitro by glucocorticoid plus cAMP. Am J Physiol Lung Cell Mol Physiol 283:L940ā€“951

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Hadorn E (1965) Problems of determination and transdetermination. Brookhaven Sym Biol, 148ā€“161

    Google ScholarĀ 

  • Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, Ishibashi M, Kageyama R, Guillemot F, Serup P, Madsen OD (2000) Control of endodermal endocrine development by Hes-1. Nat Genet 24:36ā€“44

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Jorgensen MC, Ahnfelt-Ronne J, Hald J, Madsen OD, Serup P, Hecksher-Sorensen J (2007) An illustrated review of early pancreas development in the mouse. Endocr Rev 28:685ā€“705

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Jung J, Zheng M, Goldfarb M, Zaret KS (1999) Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 284:1998ā€“2003

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kawazoe Y, Sekimoto T, Araki M, Takagi K, Araki K, Yamamura K (2002) Region-specific gastrointestinal Hox code during murine embryonal gut development. Dev Growth Differ 44:77ā€“84

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Li L, Krantz ID, Deng Y, Genin A, Banta AB, Collins CC, Qi M, Trask BJ, Kuo WL, Cochran J, Costa T, Pierpont ME, Rand EB, Piccoli DA, Hood L, Spinner NB (1997) Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet 16:243ā€“251

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Liu Y, Sadikot RT, Adami GR, Kalinichenko VV, Pendyala S, Natarajan V, Zhao YY, Malik AB (2011) FoxM1 mediates the progenitor function of type II epithelial cells in repairing alveolar injury induced by Pseudomonas aeruginosa. J Exp Med 208:1473ā€“1484

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Loomes KM, Taichman DB, Glover CL, Williams PT, Markowitz JE, Piccoli DA, Baldwin HS, Oakey RJ (2002) Characterization of Notch receptor expression in the developing mammalian heart and liver. Am J Med Genet 112:181ā€“189

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Maves L, Schubiger G (1995) Wingless induces transdetermination in developing Drosophila imaginal discs. Development 121:1263ā€“1272

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Mlodzik M, Fjose A, Gehring WJ (1985) Isolation of caudal, a Drosophila homeo box-containing gene with maternal expression, whose transcripts form a concentration gradient at the pre-blastoderm stage. EMBO J 4:2961ā€“2969

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Moll R, Franke WW, Schiller DL, Geiger B, Krepler R (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11ā€“24

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Murtaugh LC, Melton DA (2003) Genes, signals, and lineages in pancreas development. Annu Rev Cell Dev Biol 19:71ā€“89

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Murtaugh LC, Stanger BZ, Kwan KM, Melton DA (2003) Notch signaling controls multiple steps of pancreatic differentiation. Proc Natl Acad Sci USA 100:14920ā€“14925

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Nijjar SS, Wallace L, Crosby HA, Hubscher SG, Strain AJ (2002) Altered Notch ligand expression in human liver disease: further evidence for a role of the Notch signaling pathway in hepatic neovascularization and biliary ductular defects. Am J Pathol 160:1695ā€“1703

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Norgaard GA, Jensen JN, Jensen J (2003) FGF10 signaling maintains the pancreatic progenitor cell state revealing a novel role of Notch in organ development. Dev Biol 264:323ā€“338

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Portin P (2002) General outlines of the molecular genetics of the Notch signalling pathway in Drosophila melanogaster: a review. Hereditas 136:89ā€“96

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Qiao R, Yan W, Clavijo C, Mehrian-Shai R, Zhong Q, Kim KJ, Ann D, Crandall ED, Borok Z (2008) Effects of KGF on alveolar epithelial cell transdifferentiation are mediated by JNK signaling. Am J Respir Cell Mol Biol 38:239ā€“246

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ramalho-Santos M, Melton DA, McMahon AP (2000) Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 127:2763ā€“2772

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Raymond C, Anne V, Millane G (1991) Development of esophageal epithelium in the fetal and neonatal mouse. Anat Rec 230:225ā€“234

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Roberts DJ, Johnson RL, Burke AC, Nelson CE, Morgan BA, Tabin C (1995) Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut. Development 121:3163ā€“3174

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Roberts DJ, Smith DM, Goff DJ, Tabin CJ (1998) Epithelial-mesenchymal signaling during the regionalization of the chick gut. Development 125:2791ā€“2801

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Rock JR, Hogan BL (2011) Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu Rev Cell Dev Biol 27:493ā€“512

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Rossi JM, Dunn NR, Hogan BL, Zaret KS (2001) Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev 15:1998ā€“2009

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Selman K, Kafatos FC (1974) Transdifferentiation in the labial gland of silk moths: is DNA required for cellular metamorphosis? Cell Differ 3:81ā€“94

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Shiojiri N (1997) Development and differentiation of bile ducts in the mammalian liver. Microsc Res Tech 39:328ā€“335

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Silberg DG, Swain GP, Suh ER, Traber PG (2000) Cdx1 and cdx2 expression during intestinal development. Gastroenterology 119:961ā€“971

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Sumazaki R, Shiojiri N, Isoyama S, Masu M, Keino-Masu K, Osawa M, Nakauchi H, Kageyama R, Matsui A (2004) Conversion of biliary system to pancreatic tissue in Hes1-deficient mice. Nat Genet 36:83ā€“87

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Terada T, Kato M, Horie S, Endo K, Kitamura Y (1998) Expression of pancreatic alpha-amylase protein and messenger RNA in hilar primitive bile ducts and hepatocytes during human fetal liver organogenesis: an immunohistochemical and in situ hybridization study. Liver 18:313ā€“319

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Thorey IS, Meneses JJ, Neznanov N, Kulesh DA, Pedersen RA, Oshima RG (1993) Embryonic expression of human keratin 18 and K18-beta-galactosidase fusion genes in transgenic mice. Dev Biol 160:519ā€“534

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Wells JM, Melton DA (1999) Vertebrate endoderm development. Annu Rev Cell Dev Biol 15:393ā€“410

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Yu WY, Slack JM, Tosh D (2005) Conversion of columnar to stratified squamous epithelium in the developing mouse oesophagus. Dev Biol 284:157ā€“170

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoƫ D. Burke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burke, Z.D., Miron-Buchacra, G., Tosh, D. (2012). Cellular Reprogramming During Mouse Development. In: Kubiak, J. (eds) Mouse Development. Results and Problems in Cell Differentiation, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30406-4_16

Download citation

Publish with us

Policies and ethics