Skip to main content

Cell Lineages, Growth and Repair of the Mouse Heart

  • Chapter
  • First Online:
Mouse Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 55))

Abstract

The formation of the heart involves diversification of lineages which differentiate into distinct cardiac cell types or contribute to different regions such as the four cardiac chambers. The heart is the first organ to form in the embryo. However, in parallel with the growth of the organism, before or after birth, the heart has to adapt its size to maintain pumping efficiency. The adult heart has only a mild regeneration potential; thus, strategies to repair the heart after injury are based on the mobilisation of resident cardiac stem cells or the transplantation of external sources of stem cells. We discuss current knowledge on these aspects and raise questions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bajolle F, Zaffran S, Meilhac SM, Dandonneau M, Chang T, Kelly RG, Buckingham ME (2008) Myocardium at the base of the aorta and pulmonary trunk is prefigured in the outflow tract of the heart and in subdomains of the second heart field. Dev Biol 313:25–34

    PubMed  CAS  Google Scholar 

  • Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673

    PubMed  CAS  Google Scholar 

  • Barry SP, Davidson SM, Townsend PA (2008) Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol 40:2023–2039

    PubMed  CAS  Google Scholar 

  • Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    PubMed  CAS  Google Scholar 

  • Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, Nadal-Ginard B, Silvestri F, Leri A, Beltrami CA et al (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344:1750–1757

    PubMed  CAS  Google Scholar 

  • Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    PubMed  CAS  Google Scholar 

  • Bertrand N, Roux M, Ryckebusch L, Niederreither K, Dolle P, Moon A, Capecchi M, Zaffran S (2011) Hox genes define distinct progenitor sub-domains within the second heart field. Dev Biol 353:266–274

    PubMed  CAS  Google Scholar 

  • Blin G, Nury D, Stefanovic S, Neri T, Guillevic O, Brinon B, Bellamy V, Rucker-Martin C, Barbry P, Bel A et al (2010) A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J Clin Invest 120:1125–1139

    PubMed  CAS  Google Scholar 

  • Bolte C, Zhang Y, Wang IC, Kalin TV, Molkentin JD, Kalinichenko VV (2011) Expression of Foxm1 transcription factor in cardiomyocytes is required for myocardial development. PLoS One 6:e22217

    PubMed  CAS  Google Scholar 

  • Bondue A, Lapouge G, Paulissen C, Semeraro C, Iacovino M, Kyba M, Blanpain C (2008) Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 3:69–84

    PubMed  CAS  Google Scholar 

  • Brown CB, Wenning JM, Lu MM, Epstein DJ, Meyers EN, Epstein JA (2004) Cre-mediated excision of Fgf8 in the Tbx1 expression domain reveals a critical role for Fgf8 in cardiovascular development in the mouse. Dev Biol 267:190–202

    PubMed  CAS  Google Scholar 

  • Buckingham M, Biben C, Lawson KA (1997) Fate mapping of pre-cardiac cells in the developing mouse. In: Olson EN, Harvey RP, Schultz RA, Altman JS (eds) Genetic control of heart development. HSFP, Strasbourg, pp 31–33

    Google Scholar 

  • Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835

    PubMed  CAS  Google Scholar 

  • Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, Evans S (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5:877–889

    PubMed  CAS  Google Scholar 

  • Cai CL, Martin JC, Sun Y, Cui L, Wang L, Ouyang K, Yang L, Bu L, Liang X, Zhang X et al (2008) A myocardial lineage derives from Tbx18 epicardial cells. Nature 454:104–108

    PubMed  CAS  Google Scholar 

  • Cai CL, Zhou W, Yang L, Bu L, Qyang Y, Zhang X, Li X, Rosenfeld MG, Chen J, Evans S (2005) T-box genes coordinate regional rates of proliferation and regional specification during cardiogenesis. Development 132:2475–2487

    PubMed  CAS  Google Scholar 

  • Camenisch T, Runyan R, Markwald RR (2010) Molecular regulation of cushion morphogenesis. In: Rosenthal N, Harvey R (eds) Heart development and regeneration. Elsevier, Amsterdam, pp 363–387

    Google Scholar 

  • Camenisch TD, Schroeder JA, Bradley J, Klewer SE, McDonald JA (2002) Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nat Med 8:850–855

    PubMed  CAS  Google Scholar 

  • Camenisch TD, Spicer AP, Brehm-Gibson T, Biesterfeldt J, Augustine ML, Calabro A Jr, Kubalak S, Klewer SE, McDonald JA (2000) Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest 106:349–360

    PubMed  CAS  Google Scholar 

  • Carmona R, Guadix JA, Cano E, Ruiz-Villalba A, Portillo-Sanchez V, Perez-Pomares JM, Munoz-Chapuli R (2010) The embryonic epicardium: an essential element of cardiac development. J Cell Mol Med 14:2066–2072

    PubMed  CAS  Google Scholar 

  • Catalucci D, Latronico MV, Ellingsen O, Condorelli G (2008) Physiological myocardial hypertrophy: how and why? Front Biosci 13:312–324

    PubMed  CAS  Google Scholar 

  • Chan-Thomas PS, Thompson RP, Robert B, Yacoub MH, Barton PJ (1993) Expression of homeobox genes Msx-1 (Hox-7) and Msx-2 (Hox-8) during cardiac development in the chick. Dev Dyn 197:203–216

    PubMed  CAS  Google Scholar 

  • Chen H, Shi S, Acosta L, Li W, Lu J, Bao S, Chen Z, Yang Z, Schneider MD, Chien KR et al (2004) BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131:2219–2231

    PubMed  CAS  Google Scholar 

  • Choi YH, Kurtz A, Stamm C (2011) Mesenchymal stem cells for cardiac cell therapy. Hum Gene Ther 22:3–17

    PubMed  CAS  Google Scholar 

  • Chong JJ, Chandrakanthan V, Xaymardan M, Asli NS, Li J, Ahmed I, Heffernan C, Menon MK, Scarlett CJ, Rashidianfar A et al (2011) Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell 9:527–540

    PubMed  CAS  Google Scholar 

  • Christoffels V, Hoogaars WM, Moorman A (2010) Patterning and development of the conduction system of the heart: origins of the conduction system in development. In: Rosenthal N, Harvey R (eds) Heart development and regeneration. Elsevier, Amsterdam, pp 171–192

    Google Scholar 

  • Christoffels VM, Grieskamp T, Norden J, Mommersteeg MT, Rudat C, Kispert A (2009) Tbx18 and the fate of epicardial progenitors. Nature 458:E8–9, discussion E9–10

    PubMed  CAS  Google Scholar 

  • Christoffels VM, Hoogaars WM, Tessari A, Clout DE, Moorman AF, Campione M (2004) T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Dev Dyn 229:763–770

    PubMed  CAS  Google Scholar 

  • Christoffels VM, Mommersteeg MT, Trowe MO, Prall OW, de Gier-de Vries C, Soufan AT, Bussen M, Schuster-Gossler K, Harvey RP, Moorman AF et al (2006) Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18. Circ Res 98:1555–1563

    PubMed  CAS  Google Scholar 

  • De la Cruz MV, Gimenez-Ribotta M, Saravalli O, Cayre R (1983) The contribution of the inferior endocardial cushion of the atrioventricular canal to cardiac septation and to the development of the atrioventricular valves: study in the chick embryo. Am J Anat 166:63–72

    PubMed  Google Scholar 

  • de Lange FJ, Moorman AF, Anderson RH, Manner J, Soufan AT, de Gier-de Vries C, Schneider MD, Webb S, van den Hoff MJ, Christoffels VM (2004) Lineage and morphogenetic analysis of the cardiac valves. Circ Res 95:645–654

    PubMed  Google Scholar 

  • Dodou E, Verzi MP, Anderson JP, Xu SM, Black BL (2004) Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development 131:3931–3942

    PubMed  CAS  Google Scholar 

  • Domian IJ, Chiravuri M, van der Meer P, Feinberg AW, Shi X, Shao Y, Wu SM, Parker KK, Chien KR (2009) Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science 326:426–429

    PubMed  CAS  Google Scholar 

  • Dubois NC, Craft AM, Sharma P, Elliott DA, Stanley EG, Elefanty AG, Gramolini A, Keller G (2011) SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol 29:1011–1018

    PubMed  CAS  Google Scholar 

  • Dunwoodie SL, Rodriguez TA, Beddington RS (1998) Msg1 and Mrg1, founding members of a gene family, show distinct patterns of gene expression during mouse embryogenesis. Mech Dev 72:27–40

    PubMed  CAS  Google Scholar 

  • Efe JA, Hilcove S, Kim J, Zhou H, Ouyang K, Wang G, Chen J, Ding S (2011) Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol 13:215–222

    PubMed  CAS  Google Scholar 

  • Ferdous A, Caprioli A, Iacovino M, Martin CM, Morris J, Richardson JA, Latif S, Hammer RE, Harvey RP, Olson EN et al (2009) Nkx2-5 transactivates the Ets-related protein 71 gene and specifies an endothelial/endocardial fate in the developing embryo. Proc Natl Acad Sci USA 106:814–819

    PubMed  CAS  Google Scholar 

  • Fernandez E, Siddiquee Z, Shohet RV (2001) Apoptosis and proliferation in the neonatal murine heart. Dev Dyn 221:302–310

    PubMed  CAS  Google Scholar 

  • Fishman MC, Chien KR (1997) Fashioning the vertebrate heart: earliest embryonic decisions. Development 124:2099–2117

    PubMed  CAS  Google Scholar 

  • Freund C, Ward-van Oostwaard D, Monshouwer-Kloots J, van den Brink S, van Rooijen M, Xu X, Zweigerdt R, Mummery C, Passier R (2008) Insulin redirects differentiation from cardiogenic mesoderm and endoderm to neuroectoderm in differentiating human embryonic stem cells. Stem Cells 26:724–733

    PubMed  CAS  Google Scholar 

  • Furtado MB, Biben C, Shiratori H, Hamada H, Harvey RP (2011) Characterization of Pitx2c expression in the mouse heart using a reporter transgene. Dev Dyn 240:195–203

    PubMed  CAS  Google Scholar 

  • Galli D, Dominguez JN, Zaffran S, Munk A, Brown NA, Buckingham ME (2008) Atrial myocardium derives from the posterior region of the second heart field, which acquires left-right identity as Pitx2c is expressed. Development 135:1157–1167

    PubMed  CAS  Google Scholar 

  • Galli D, Innocenzi A, Staszewsky L, Zanetta L, Sampaolesi M, Bai A, Martinoli E, Carlo E, Balconi G, Fiordaliso F et al (2005) Mesoangioblasts, vessel-associated multipotent stem cells, repair the infarcted heart by multiple cellular mechanisms: a comparison with bone marrow progenitors, fibroblasts, and endothelial cells. Arterioscler Thromb Vasc Biol 25:692–697

    PubMed  CAS  Google Scholar 

  • Galvez BG, Sampaolesi M, Barbuti A, Crespi A, Covarello D, Brunelli S, Dellavalle A, Crippa S, Balconi G, Cuccovillo I et al (2008) Cardiac mesoangioblasts are committed, self-renewable progenitors, associated with small vessels of juvenile mouse ventricle. Cell Death Differ 15:1417–1428

    PubMed  CAS  Google Scholar 

  • Gittenberger-de Groot AC, Mahtab EA, Hahurij ND, Wisse LJ, Deruiter MC, Wijffels MC, Poelmann RE (2007) Nkx2.5-negative myocardium of the posterior heart field and its correlation with podoplanin expression in cells from the developing cardiac pacemaking and conduction system. Anat Rec (Hoboken) 290:115–122

    CAS  Google Scholar 

  • Gourdie RG, Wei Y, Kim D, Klatt SC, Mikawa T (1998) Endothelin-induced conversion of embryonic heart muscle cells into impulse-conducting Purkinje fibers. Proc Natl Acad Sci USA 95:6815–6818

    PubMed  CAS  Google Scholar 

  • Grego-Bessa J, Luna-Zurita L, del Monte G, Bolos V, Melgar P, Arandilla A, Garratt AN, Zang H, Mukouyama YS, Chen H et al (2007) Notch signaling is essential for ventricular chamber development. Dev Cell 12:415–429

    PubMed  CAS  Google Scholar 

  • Harris IS, Black BL (2010) Development of the endocardium. Pediatr Cardiol 31:391–399

    PubMed  Google Scholar 

  • Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF (2011) Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332:458–461

    PubMed  CAS  Google Scholar 

  • Henderson DJ, Chaudhry B (2011) Getting to the heart of planar cell polarity signaling. Birth Defects Res A Clin Mol Teratol 91:460–467

    PubMed  CAS  Google Scholar 

  • Hirschy A, Schatzmann F, Ehler E, Perriard JC (2006) Establishment of cardiac cytoarchitecture in the developing mouse heart. Dev Biol 289:430–441

    PubMed  CAS  Google Scholar 

  • Hoogaars WM, Tessari A, Moorman AF, de Boer PA, Hagoort J, Soufan AT, Campione M, Christoffels VM (2004) The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res 62:489–499

    PubMed  CAS  Google Scholar 

  • Hsieh PC, Segers VF, Davis ME, MacGillivray C, Gannon J, Molkentin JD, Robbins J, Lee RT (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13:970–974

    PubMed  CAS  Google Scholar 

  • Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386

    PubMed  CAS  Google Scholar 

  • Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong TT, Shaw RM, Srivastava D (2009) Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 16:233–244

    PubMed  CAS  Google Scholar 

  • Ishii Y, Langberg JD, Hurtado R, Lee S, Mikawa T (2007) Induction of proepicardial marker gene expression by the liver bud. Development 134:3627–3637

    PubMed  CAS  Google Scholar 

  • Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cardiac neural crest. Development 127:1607–1616

    PubMed  CAS  Google Scholar 

  • Jopling C, Sleep E, Raya M, Marti M, Raya A, Belmonte JC (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464:606–609

    PubMed  CAS  Google Scholar 

  • Kaufman MH, Navaratnam V (1981) Early differentiation of the heart in mouse embryos. J Anat 133:235–246

    PubMed  CAS  Google Scholar 

  • Kelly RG, Brown NA, Buckingham ME (2001) The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 1:435–440

    PubMed  CAS  Google Scholar 

  • Kinder SJ, Tsang TE, Quinlan GA, Hadjantonakis AK, Nagy A, Tam PP (1999) The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development 126:4691–4701

    PubMed  CAS  Google Scholar 

  • Kirby ML, Gale TF, Stewart DE (1983) Neural crest cells contribute to normal aorticopulmonary septation. Science 220:1059–1061

    PubMed  CAS  Google Scholar 

  • Kitajima S, Miyagawa-Tomita S, Inoue T, Kanno J, Saga Y (2006) Mesp1-nonexpressing cells contribute to the ventricular cardiac conduction system. Dev Dyn 235:395–402

    PubMed  CAS  Google Scholar 

  • Klaus A, Saga Y, Taketo MM, Tzahor E, Birchmeier W (2007) Distinct roles of Wnt/beta-catenin and Bmp signaling during early cardiogenesis. Proc Natl Acad Sci USA 104:18531–18536

    PubMed  CAS  Google Scholar 

  • Koh GY, Klug MG, Soonpaa MH, Field LJ (1993) Differentiation and long-term survival of C2C12 myoblast grafts in heart. J Clin Invest 92:1548–1554

    PubMed  CAS  Google Scholar 

  • Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74:679–691

    PubMed  CAS  Google Scholar 

  • Kubin T, Poling J, Kostin S, Gajawada P, Hein S, Rees W, Wietelmann A, Tanaka M, Lorchner H, Schimanski S et al (2011) Oncostatin m is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell 9:420–432

    PubMed  CAS  Google Scholar 

  • Kwon C, Arnold J, Hsiao EC, Taketo MM, Conklin BR, Srivastava D (2007) Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proc Natl Acad Sci USA 104:10894–10899

    PubMed  CAS  Google Scholar 

  • Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024

    PubMed  CAS  Google Scholar 

  • Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23:845–856

    PubMed  CAS  Google Scholar 

  • Lamers WH, De Jong F, De Groot IJ, Moorman AF (1991) The development of the avian conduction system, a review. Eur J Morphol 29:233–253

    PubMed  CAS  Google Scholar 

  • Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, Lin LZ, Cai CL, Lu MM, Reth M et al (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433:647–653

    PubMed  CAS  Google Scholar 

  • Lawson KA, Pedersen RA (1987) Cell fate, morphogenetic movement and population kinetics of embryonic endoderm at the time of germ layer formation in the mouse. Development 101:627–652

    PubMed  CAS  Google Scholar 

  • Le Lievre CS, Le Douarin NM (1975) Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol 34:125–154

    PubMed  Google Scholar 

  • Lescroart F, Kelly RG, Le Garrec JF, Nicolas JF, Meilhac SM, Buckingham M (2010) Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo. Development 137:3269–3279

    PubMed  CAS  Google Scholar 

  • Leu M, Ehler E, Perriard JC (2001) Characterisation of postnatal growth of the murine heart. Anat Embryol (Berl) 204:217–224

    CAS  Google Scholar 

  • Li P, Cavallero S, Gu Y, Chen TH, Hughes J, Hassan AB, Bruning JC, Pashmforoush M, Sucov HM (2011) IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development. Development 138:1795–1805

    PubMed  CAS  Google Scholar 

  • Lin L, Cui L, Zhou W, Dufort D, Zhang X, Cai CL, Bu L, Yang L, Martin J, Kemler R et al (2007) Beta-catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. Proc Natl Acad Sci USA 104:9313–9318

    PubMed  CAS  Google Scholar 

  • Linask KK, Knudsen KA, Gui YH (1997) N-cadherin-catenin interaction: necessary component of cardiac cell compartmentalization during early vertebrate heart development. Dev Biol 185:148–164

    PubMed  CAS  Google Scholar 

  • Lindsley RC, Gill JG, Murphy TL, Langer EM, Cai M, Mashayekhi M, Wang W, Niwa N, Nerbonne JM, Kyba M et al (2008) Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell 3:55–68

    PubMed  CAS  Google Scholar 

  • Lints TJ, Parsons LM, Hartley L, Lyons I, Harvey RP (1993) Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119:969

    PubMed  CAS  Google Scholar 

  • Loffredo FS, Steinhauser ML, Gannon J, Lee RT (2011) Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell 8:389–398

    PubMed  CAS  Google Scholar 

  • Ma Q, Zhou B, Pu WT (2008) Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activity. Dev Biol 323:98–104

    PubMed  CAS  Google Scholar 

  • Manner J (1999) Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. Anat Rec 255:212–226

    PubMed  CAS  Google Scholar 

  • Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, Bates S, Goetsch SC, Gallardo TD, Garry DJ (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265:262–275

    PubMed  CAS  Google Scholar 

  • Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, Sano M, Toko H, Akazawa H, Sato T et al (2004) Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 279:11384–11391

    PubMed  CAS  Google Scholar 

  • McMullen JR, Shioi T, Huang WY, Zhang L, Tarnavski O, Bisping E, Schinke M, Kong S, Sherwood MC, Brown J et al (2004) The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway. J Biol Chem 279:4782–4793

    PubMed  CAS  Google Scholar 

  • Meilhac SM, Esner M, Kelly RG, Nicolas JF, Buckingham ME (2004a) The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 6:685–698

    PubMed  CAS  Google Scholar 

  • Meilhac SM, Esner M, Kerszberg M, Moss JE, Buckingham ME (2004b) Oriented clonal cell growth in the developing mouse myocardium underlies cardiac morphogenesis. J Cell Biol 164:97–109

    PubMed  CAS  Google Scholar 

  • Meilhac SM, Kelly RG, Rocancourt D, Eloy-Trinquet S, Nicolas JF, Buckingham ME (2003) A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart. Development 130:3877–3889

    PubMed  CAS  Google Scholar 

  • Menasche P, Hagege AA, Vilquin JT, Desnos M, Abergel E, Pouzet B, Bel A, Sarateanu S, Scorsin M, Schwartz K et al (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41:1078–1083

    PubMed  Google Scholar 

  • Merki E, Zamora M, Raya A, Kawakami Y, Wang J, Zhang X, Burch J, Kubalak SW, Kaliman P, Belmonte JC et al (2005) Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc Natl Acad Sci USA 102:18455–18460

    PubMed  CAS  Google Scholar 

  • Meyer D, Birchmeier C (1995) Multiple essential functions of neuregulin in development. Nature 378:386–390

    PubMed  CAS  Google Scholar 

  • Mikawa T, Gourdie RG (1996) Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 174:221–232

    PubMed  CAS  Google Scholar 

  • Milgrom-Hoffman M, Harrelson Z, Ferrara N, Zelzer E, Evans SM, Tzahor E (2011) The heart endocardium is derived from vascular endothelial progenitors. Development 138:4777–4787

    PubMed  CAS  Google Scholar 

  • Miquerol L, Moreno-Rascon N, Beyer S, Dupays L, Meilhac SM, Buckingham ME, Franco D, Kelly RG (2010) Biphasic development of the mammalian ventricular conduction system. Circ Res 107:153–161

    PubMed  CAS  Google Scholar 

  • Mommersteeg MT, Dominguez JN, Wiese C, Norden J, de Gier-de Vries C, Burch JB, Kispert A, Brown NA, Moorman AF, Christoffels VM (2010) The sinus venosus progenitors separate and diversify from the first and second heart fields early in development. Cardiovasc Res 87:92–101

    PubMed  CAS  Google Scholar 

  • Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, Qyang Y, Bu L, Sasaki M, Martin-Puig S et al (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165

    PubMed  CAS  Google Scholar 

  • Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, van der Heyden M, Opthof T, Pera M, de la Riviere AB et al (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107:2733–2740

    PubMed  CAS  Google Scholar 

  • Mummery CL, Davis RP, Krieger JE (2010) Challenges in using stem cells for cardiac repair. Sci Transl Med 2:27ps17

    PubMed  Google Scholar 

  • Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    PubMed  CAS  Google Scholar 

  • Nakajima K, Inagawa M, Uchida C, Okada K, Tane S, Kojima M, Kubota M, Noda M, Ogawa S, Shirato H et al (2011) Coordinated regulation of differentiation and proliferation of embryonic cardiomyocytes by a jumonji (Jarid2)-cyclin D1 pathway. Development 138:1771–1782

    PubMed  CAS  Google Scholar 

  • Nelson TJ, Martinez-Fernandez A, Yamada S, Perez-Terzic C, Ikeda Y, Terzic A (2009) Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 120:408–416

    PubMed  Google Scholar 

  • Nishii K, Shibata Y (2006) Mode and determination of the initial contraction stage in the mouse embryo heart. Anat Embryol (Berl) 211:95–100

    Google Scholar 

  • Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, Pocius J, Michael LH, Behringer RR, Garry DJ et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100:12313–12318

    PubMed  CAS  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    PubMed  CAS  Google Scholar 

  • Peng X, Wu X, Druso JE, Wei H, Park AY, Kraus MS, Alcaraz A, Chen J, Chien S, Cerione RA et al (2008) Cardiac developmental defects and eccentric right ventricular hypertrophy in cardiomyocyte focal adhesion kinase (FAK) conditional knockout mice. Proc Natl Acad Sci USA 105:6638–6643

    PubMed  CAS  Google Scholar 

  • Perez-Pomares JM, Phelps A, Sedmerova M, Wessels A (2003) Epicardial-like cells on the distal arterial end of the cardiac outflow tract do not derive from the proepicardium but are derivatives of the cephalic pericardium. Dev Dyn 227:56–68

    PubMed  Google Scholar 

  • Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080

    PubMed  CAS  Google Scholar 

  • Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298:2188–2190

    PubMed  CAS  Google Scholar 

  • Prall OW, Menon MK, Solloway MJ, Watanabe Y, Zaffran S, Bajolle F, Biben C, McBride JJ, Robertson BR, Chaulet H et al (2007) An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell 128:947–959

    PubMed  CAS  Google Scholar 

  • Rasmussen TL, Kweon J, Diekmann MA, Belema-Bedada F, Song Q, Bowlin K, Shi X, Ferdous A, Li T, Kyba M et al (2011) ER71 directs mesodermal fate decisions during embryogenesis. Development 138:4801–4812

    PubMed  CAS  Google Scholar 

  • Red-Horse K, Ueno H, Weissman IL, Krasnow MA (2010) Coronary arteries form by developmental reprogramming of venous cells. Nature 464:549–553

    PubMed  CAS  Google Scholar 

  • Reinecke H, Minami E, Poppa V, Murry CE (2004) Evidence for fusion between cardiac and skeletal muscle cells. Circ Res 94:e56–60

    PubMed  CAS  Google Scholar 

  • Risebro CA, Searles RG, Melville AA, Ehler E, Jina N, Shah S, Pallas J, Hubank M, Dillard M, Harvey NL et al (2009) Prox1 maintains muscle structure and growth in the developing heart. Development 136:495–505

    PubMed  CAS  Google Scholar 

  • Rochais F, Dandonneau M, Mesbah K, Jarry T, Mattei MG, Kelly RG (2009) Hes1 is expressed in the second heart field and is required for outflow tract development. PLoS One 4:e6267

    PubMed  Google Scholar 

  • Roell W, Lu ZJ, Bloch W, Siedner S, Tiemann K, Xia Y, Stoecker E, Fleischmann M, Bohlen H, Stehle R et al (2002) Cellular cardiomyoplasty improves survival after myocardial injury. Circulation 105:2435–2441

    PubMed  Google Scholar 

  • Rubart M, Pasumarthi KB, Nakajima H, Soonpaa MH, Nakajima HO, Field LJ (2003) Physiological coupling of donor and host cardiomyocytes after cellular transplantation. Circ Res 92:1217–1224

    PubMed  CAS  Google Scholar 

  • Rubart M, Soonpaa MH, Nakajima H, Field LJ (2004) Spontaneous and evoked intracellular calcium transients in donor-derived myocytes following intracardiac myoblast transplantation. J Clin Invest 114:775–783

    PubMed  CAS  Google Scholar 

  • Ryckebusch L, Wang Z, Bertrand N, Lin SC, Chi X, Schwartz R, Zaffran S, Niederreither K (2008) Retinoic acid deficiency alters second heart field formation. Proc Natl Acad Sci USA 105:2913–2918

    PubMed  CAS  Google Scholar 

  • Saga Y, Kitajima S, Miyagawa-Tomita S (2000) Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med 10:345–352

    PubMed  CAS  Google Scholar 

  • Saga Y, Miyagawa-Tomita S, Takagi A, Kitajima S, Miyazaki J, Inoue T (1999) MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126:3437–3447

    PubMed  CAS  Google Scholar 

  • Sassoon DA, Garner I, Buckingham M (1988) Transcripts of alpha-cardiac and alpha-skeletal actins are early markers for myogenesis in the mouse embryo. Development 104:155–164

    PubMed  CAS  Google Scholar 

  • Schulte I, Schlueter J, Abu-Issa R, Brand T, Manner J (2007) Morphological and molecular left-right asymmetries in the development of the proepicardium: a comparative analysis on mouse and chick embryos. Dev Dyn 236:684–695

    PubMed  Google Scholar 

  • Sedmera D, Thompson RP (2011) Myocyte proliferation in the developing heart. Dev Dyn 240:1322–1334

    PubMed  CAS  Google Scholar 

  • Shai SY, Harpf AE, Babbitt CJ, Jordan MC, Fishbein MC, Chen J, Omura M, Leil TA, Becker KD, Jiang M et al (2002) Cardiac myocyte-specific excision of the beta1 integrin gene results in myocardial fibrosis and cardiac failure. Circ Res 90:458–464

    PubMed  CAS  Google Scholar 

  • Smart N, Bollini S, Dube KN, Vieira JM, Zhou B, Davidson S, Yellon D, Riegler J, Price AN, Lythgoe MF et al (2011) De novo cardiomyocytes from within the activated adult heart after injury. Nature 474:640–644

    PubMed  CAS  Google Scholar 

  • Smits PC, van Geuns RJ, Poldermans D, Bountioukos M, Onderwater EE, Lee CH, Maat AP, Serruys PW (2003) Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J Am Coll Cardiol 42:2063–2069

    PubMed  Google Scholar 

  • Snider P, Standley KN, Wang J, Azhar M, Doetschman T, Conway SJ (2009) Origin of cardiac fibroblasts and the role of periostin. Circ Res 105:934–947

    PubMed  CAS  Google Scholar 

  • Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ (1996) Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol 271:H2183–2189

    PubMed  CAS  Google Scholar 

  • Soonpaa MH, Koh GY, Klug MG, Field LJ (1994) Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264:98–101

    PubMed  CAS  Google Scholar 

  • Stankunas K, Hang CT, Tsun ZY, Chen H, Lee NV, Wu JI, Shang C, Bayle JH, Shou W, Iruela-Arispe ML et al (2008) Endocardial Brg1 represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis. Dev Cell 14:298–311

    PubMed  CAS  Google Scholar 

  • Stanley EG, Biben C, Elefanty A, Barnett L, Koentgen F, Robb L, Harvey RP (2002) Efficient Cre-mediated deletion in cardiac progenitor cells conferred by a 3′UTR-ires-Cre allele of the homeobox gene Nkx2-5. Int J Dev Biol 46:431–439

    PubMed  CAS  Google Scholar 

  • Sucov HM, Gu Y, Thomas S, Li P, Pashmforoush M (2009) Epicardial control of myocardial proliferation and morphogenesis. Pediatr Cardiol 30:617–625

    PubMed  Google Scholar 

  • Sun Y, Liang X, Najafi N, Cass M, Lin L, Cai CL, Chen J, Evans SM (2007) Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol 304:286–296

    PubMed  CAS  Google Scholar 

  • Takeuchi JK, Bruneau BG (2009) Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 459:708–711

    PubMed  CAS  Google Scholar 

  • Tam PP, Parameswaran M, Kinder SJ, Weinberger RP (1997) The allocation of epiblast cells to the embryonic heart and other mesodermal lineages: the role of ingression and tissue movement during gastrulation. Development 124:1631–1642

    PubMed  CAS  Google Scholar 

  • Terada R, Warren S, Lu JT, Chien KR, Wessels A, Kasahara H (2011) Ablation of Nkx2-5 at mid-embryonic stage results in premature lethality and cardiac malformation. Cardiovasc Res 91:289–299

    PubMed  CAS  Google Scholar 

  • Theveniau-Ruissy M, Dandonneau M, Mesbah K, Ghez O, Mattei MG, Miquerol L, Kelly RG (2008) The del22q11.2 candidate gene Tbx1 controls regional outflow tract identity and coronary artery patterning. Circ Res 103:142–148

    PubMed  CAS  Google Scholar 

  • Thompson RP, Lindroth JR, Wong M (1990) Regional differences in DNA-synthetic activity in the preseptation myocardium of the chick. In: Clark EB, Takao A (eds) Developmental cardiology: morphogenesis and function. PFuturama Publishing Co, NY, pp 219–234

    Google Scholar 

  • Tzouanacou E, Wegener A, Wymeersch FJ, Wilson V, Nicolas JF (2009) Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev Cell 17:365–376

    PubMed  CAS  Google Scholar 

  • van den Berg G, Abu-Issa R, de Boer BA, Hutson MR, de Boer PA, Soufan AT, Ruijter JM, Kirby ML, van den Hoff MJ, Moorman AF (2009) A caudal proliferating growth center contributes to both poles of the forming heart tube. Circ Res 104:179–188

    PubMed  Google Scholar 

  • van Laake LW, Passier R, den Ouden K, Schreurs C, Monshouwer-Kloots J, Ward-van Oostwaard D, van Echteld CJ, Doevendans PA, Mummery CL (2009) Improvement of mouse cardiac function by hESC-derived cardiomyocytes correlates with vascularity but not graft size. Stem Cell Res 3:106–112

    PubMed  Google Scholar 

  • van Wijk B, van den Berg G, Abu-Issa R, Barnett P, van der Velden S, Schmidt M, Ruijter JM, Kirby ML, Moorman AF, van den Hoff MJ (2009) Epicardium and myocardium separate from a common precursor pool by crosstalk between bone morphogenetic protein- and fibroblast growth factor-signaling pathways. Circ Res 105:431–441

    PubMed  Google Scholar 

  • Verzi MP, McCulley DJ, De Val S, Dodou E, Black BL (2005) The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev Biol 287:134–145

    PubMed  CAS  Google Scholar 

  • Vincent SD, Buckingham ME (2010) How to make a heart: the origin and regulation of cardiac progenitor cells. Curr Top Dev Biol 90:1–41

    PubMed  Google Scholar 

  • Viragh S, Challice CE (1973) Origin and differentiation of cardiac muscle cells in the mouse. J Ultrastruct Res 42:1–24

    PubMed  CAS  Google Scholar 

  • Viragh S, Challice CE (1981) The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat Rec 201:157–168

    PubMed  CAS  Google Scholar 

  • Waldo KL, Hutson MR, Ward CC, Zdanowicz M, Stadt HA, Kumiski D, Abu-Issa R, Kirby ML (2005) Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart. Dev Biol 281:78–90

    PubMed  CAS  Google Scholar 

  • Ward C, Stadt H, Hutson M, Kirby ML (2005) Ablation of the secondary heart field leads to tetralogy of Fallot and pulmonary atresia. Dev Biol 284:72–83

    PubMed  CAS  Google Scholar 

  • Weber KT, Brilla CG (1991) Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 83:1849–1865

    PubMed  CAS  Google Scholar 

  • Wei Y, Mikawa T (2000) Fate diversity of primitive streak cells during heart field formation in ovo. Dev Dyn 219:505–513

    PubMed  CAS  Google Scholar 

  • Wu M, Smith CL, Hall JA, Lee I, Luby-Phelps K, Tallquist MD (2010) Epicardial spindle orientation controls cell entry into the myocardium. Dev Cell 19:114–125

    PubMed  CAS  Google Scholar 

  • Xin M, Kim Y, Sutherland LB, Qi X, McAnally J, Schwartz RJ, Richardson JA, Bassel-Duby R, Olson EN (2011) Regulation of insulin-like growth factor signaling by yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal 4:ra70

    PubMed  Google Scholar 

  • Xu H, Morishima M, Wylie JN, Schwartz RJ, Bruneau BG, Lindsay EA, Baldini A (2004) Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract. Development 131:3217–3227

    PubMed  CAS  Google Scholar 

  • Xu XQ, Graichen R, Soo SY, Balakrishnan T, Rahmat SN, Sieh S, Tham SC, Freund C, Moore J, Mummery C et al (2008) Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation 76:958–970

    PubMed  CAS  Google Scholar 

  • Yang Y, Min JY, Rana JS, Ke Q, Cai J, Chen Y, Morgan JP, Xiao YF (2002) VEGF enhances functional improvement of postinfarcted hearts by transplantation of ESC-differentiated cells. J Appl Physiol 93:1140–1151

    PubMed  CAS  Google Scholar 

  • Zaffran S, Kelly RG, Meilhac SM, Buckingham ME, Brown NA (2004) Right ventricular myocardium derives from the anterior heart field. Circ Res 95:261–268

    PubMed  CAS  Google Scholar 

  • Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, Jiang D, von Gise A, Ikeda S, Chien KR et al (2008a) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454:109–113

    PubMed  CAS  Google Scholar 

  • Zhou B, von Gise A, Ma Q, Rivera-Feliciano J, Pu WT (2008b) Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochem Biophys Res Commun 375:450–453

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Buckingham and D. Montarras for insightful discussions. SMM is an INSERM research scientist and FL is supported by the CardioCell (FP7 - HEALTH-2007-2.4.2-5) EU project to M. Buckingham.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigolène M. Meilhac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lescroart, F., Meilhac, S.M. (2012). Cell Lineages, Growth and Repair of the Mouse Heart. In: Kubiak, J. (eds) Mouse Development. Results and Problems in Cell Differentiation, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30406-4_15

Download citation

Publish with us

Policies and ethics