Skip to main content

Balancing the Dose in the Mouse

  • Chapter
  • First Online:
Mouse Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 55))

  • 3972 Accesses

Abstract

Organisms that use a chromosomal basis of sex determination have a problem of gene inequality. In the mouse, this dimorphism is evident by the presence of two X-chromosomes in females, while males have a single X- and a single Y-chromosome. To balance this disparity, one of the two female X-chromosomes is transcriptionally silenced to neutralize the gene dose with the XY male. Dosage compensation in mammals is known as X-chromosome inactivation (XCI) and is a crucial early developmental process. XCI is an example of epigenetics: a phenotype resulting in changes on a chromosome without a change in nucleic acid sequence. Studies in mouse embryology and genetics have answered many questions about the process of balancing the dose. In this chapter, I highlight how the mouse dosage compensates the gene disparity between XX females and XY males in a crucial epigenetic process called X-chromosome inactivation (XCI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Augui S, Filion GJ, Huart S, Nora E, Guggiari M, Maresca M, Stewart AF, Heard E (2007) Sensing X chromosome pairs before X inactivation via a novel X-pairing region of the Xic. Science 318:1632–1636

    PubMed  CAS  Google Scholar 

  • Bacher CP, Guggiari M, Brors B, Augui S, Clerc P, Avner P, Eils R, Heard E (2006) Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nat Cell Biol 8:293–299

    PubMed  CAS  Google Scholar 

  • Barakat TS, Gunhanlar N, Pardo CG, Achame EM, Ghazvini M, Boers R, Kenter A, Rentmeester E, Grootegoed JA, Gribnau J (2011) RNF12 activates Xist and is essential for X chromosome inactivation. PLoS Genet 7:e1002001

    PubMed  CAS  Google Scholar 

  • Barr ML, Bertram EG (1949) A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163:676

    PubMed  CAS  Google Scholar 

  • Bartolomei MS, Ferguson-Smith AC (2011) Mammalian genomic imprinting. Cold Spring Harb Perspect Biol 3:a002592

    PubMed  CAS  Google Scholar 

  • Berletch JB, Yang F, Xu J, Carrel L, Disteche CM (2011) Genes that escape from X inactivation. Hum Genet 130:237–245

    PubMed  Google Scholar 

  • Beutler E, Yeh M, Fairbanks VF (1962) The normal human female as a mosaic of X-chromosome activity: studies using the gene for C-6-PD-deficiency as a marker. Proc Natl Acad Sci USA 48:9–16

    PubMed  CAS  Google Scholar 

  • Blewitt ME, Gendrel AV, Pang Z, Sparrow DB, Whitelaw N, Craig JM, Apedaile A, Hilton DJ, Dunwoodie SL, Brockdorff N et al (2008) SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation. Nat Genet 40:663–669

    PubMed  CAS  Google Scholar 

  • Borsani G, Tonlorenzi R, Simmler MC, Dandolo L, Arnaud D, Capra V, Grompe M, Pizzuti A, Muzny D, Lawrence C et al (1991) Characterization of a murine gene expressed from the inactive X chromosome. Nature 351:325–329

    PubMed  CAS  Google Scholar 

  • Brockdorff N, Ashworth A, Kay GF, Cooper P, Smith S, McCabe VM, Norris DP, Penny GD, Patel D, Rastan S (1991) Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature 351:329–331

    PubMed  CAS  Google Scholar 

  • Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ, Swift S, Rastan S (1992) The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71:515–526

    PubMed  CAS  Google Scholar 

  • Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y, Lawrence J, Willard HF (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71:527–542

    PubMed  CAS  Google Scholar 

  • Brown SD (1991) XIST and the mapping of the X chromosome inactivation centre. Bioessays 13:607–612

    PubMed  CAS  Google Scholar 

  • Carrel L, Willard HF (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434:400–404

    PubMed  CAS  Google Scholar 

  • Cattanach BM, Williams CE (1972) Evidence of non-random X chromosome activity in the mouse. Genet Res 19:229–240

    PubMed  CAS  Google Scholar 

  • Chao W, Huynh KD, Spencer RJ, Davidow LS, Lee JT (2002) CTCF, a candidate trans-acting factor for X-inactivation choice. Science 295:345–347

    PubMed  CAS  Google Scholar 

  • Chow JC, Ciaudo C, Fazzari MJ, Mise N, Servant N, Glass JL, Attreed M, Avner P, Wutz A, Barillot E et al (2010) LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141:956–969

    PubMed  CAS  Google Scholar 

  • Chureau C, Chantalat S, Romito A, Galvani A, Duret L, Avner P, Rougeulle C (2010) Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Hum Mol Genet 20:705–718

    PubMed  Google Scholar 

  • Chureau C, Prissette M, Bourdet A, Barbe V, Cattolico L, Jones L, Eggen A, Avner P, Duret L (2002) Comparative sequence analysis of the X-inactivation center region in mouse, human, and bovine. Genome Res 12:894–908

    PubMed  CAS  Google Scholar 

  • Chuva de Sousa Lopes C, Hayashi K, Shovlin TC, Mifsud W, Surani MA, McLaren A (2008) X chromosome activity in mouse XX primordial germ cells. PLoS Genet 4:e30

    PubMed  Google Scholar 

  • Ciavatta D, Kalantry S, Magnuson T, Smithies O (2006) A DNA insulator prevents repression of a targeted X-linked transgene but not its random or imprinted X inactivation. Proc Natl Acad Sci USA 103:9958–9963

    PubMed  CAS  Google Scholar 

  • Clemson CM, McNeil JA, Willard HF, Lawrence JB (1996) XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132:259–275

    PubMed  CAS  Google Scholar 

  • Cohen DE, Davidow LS, Erwin JA, Xu N, Warshawsky D, Lee JT (2007) The DXPas34 repeat regulates random and imprinted X inactivation. Dev Cell 12:57–71

    PubMed  CAS  Google Scholar 

  • Cooper DW (1971) Directed genetic change model for X chromosome inactivation in eutherian mammals. Nature 230:292–294

    PubMed  CAS  Google Scholar 

  • Costanzi C, Pehrson JR (1998) Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393:599–601

    PubMed  CAS  Google Scholar 

  • Csankovszki G, Panning B, Bates B, Pehrson JR, Jaenisch R (1999) Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat Genet 22:323–324

    PubMed  CAS  Google Scholar 

  • de Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M, Appanah R, Nesterova TB, Silva J, Otte AP, Vidal M et al (2004) Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7:663–676

    PubMed  Google Scholar 

  • de Napoles M, Nesterova T, Brockdorff N (2007) Early loss of Xist RNA expression and inactive X chromosome associated chromatin modification in developing primordial germ cells. PLoS One 2:e860

    PubMed  Google Scholar 

  • Debrand E, Chureau C, Arnaud D, Avner P, Heard E (1999) Functional analysis of the DXPas34 locus, a 3′ regulator of Xist expression. Mol Cell Biol 19:8513–8525

    PubMed  CAS  Google Scholar 

  • Donohoe ME, Silva SS, Pinter SF, Xu N, Lee JT (2009) The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting. Nature 460:128–132

    PubMed  CAS  Google Scholar 

  • Donohoe ME, Zhang LF, Xu N, Shi Y, Lee JT (2007) Identification of a Ctcf cofactor, Yy1, for the X chromosome binary switch. Mol Cell 25:43–56

    PubMed  CAS  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    PubMed  CAS  Google Scholar 

  • Filippova GN, Cheng MK, Moore JM, Truong JP, Hu YJ, Nguyen DK, Tsuchiya KD, Disteche CM (2005) Boundaries between chromosomal domains of X inactivation and escape bind CTCF and lack CpG methylation during early development. Dev Cell 8:31–42

    PubMed  CAS  Google Scholar 

  • Gartler SM, Liskay RM, Campbell BK, Sparkes R, Gant N (1972) Evidence for two functional X chromosomes in human oocytes. Cell Differ 1:215–218

    PubMed  CAS  Google Scholar 

  • Gartler SM, Riggs AD (1983) Mammalian X-chromosome inactivation. Annu Rev Genet 17:155–190

    PubMed  CAS  Google Scholar 

  • Greaves IK, Rangasamy D, Devoy M, Marshall Graves JA, Tremethick DJ (2006) The X and Y chromosomes assemble into H2A.Z-containing [corrected] facultative heterochromatin [corrected] following meiosis. Mol Cell Biol 26:5394–5405

    PubMed  CAS  Google Scholar 

  • Hasegawa Y, Brockdorff N, Kawano S, Tsutui K, Nakagawa S (2010) The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev Cell 19:469–476

    PubMed  CAS  Google Scholar 

  • Heard E, Kress C, Mongelard F, Courtier B, Rougeulle C, Ashworth A, Vourc'h C, Babinet C, Avner P (1996) Transgenic mice carrying an Xist-containing YAC. Hum Mol Genet 5:441–450

    PubMed  CAS  Google Scholar 

  • Helbig R, Fackelmayer FO (2003) Scaffold attachment factor A (SAF-A) is concentrated in inactive X chromosome territories through its RGG domain. Chromosoma 112:173–182

    PubMed  CAS  Google Scholar 

  • Huynh KD, Lee JT (2003) Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos. Nature 426:857–862

    PubMed  CAS  Google Scholar 

  • Jeon Y, Lee JT (2011) YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146:119–133

    PubMed  CAS  Google Scholar 

  • Jonkers I, Barakat TS, Achame EM, Monkhorst K, Kenter A, Rentmeester E, Grosveld F, Grootegoed JA, Gribnau J (2009) RNF12 is an X-Encoded dose-dependent activator of X chromosome inactivation. Cell 139:999–1011

    PubMed  CAS  Google Scholar 

  • Kunath T, Arnaud D, Uy GD, Okamoto I, Chureau C, Yamanaka Y, Heard E, Gardner RL, Avner P, Rossant J (2005) Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development 132:1649–1661

    PubMed  CAS  Google Scholar 

  • Lee JT (2000) Disruption of imprinted X inactivation by parent-of-origin effects at Tsix. Cell 103:17–27

    PubMed  CAS  Google Scholar 

  • Lee JT (2002) Homozygous Tsix mutant mice reveal a sex-ratio distortion and revert to random X-inactivation. Nat Genet 32:195–200

    PubMed  CAS  Google Scholar 

  • Lee JT (2011) Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nat Rev Mol Cell Biol 12:815–826

    PubMed  CAS  Google Scholar 

  • Lee JT, Davidow LS, Warshawsky D (1999a) Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet 21:400–404

    PubMed  CAS  Google Scholar 

  • Lee JT, Lu N (1999) Targeted mutagenesis of Tsix leads to nonrandom X inactivation. Cell 99:47–57

    PubMed  CAS  Google Scholar 

  • Lee JT, Lu N, Han Y (1999b) Genetic analysis of the mouse X inactivation center defines an 80-kb multifunction domain. Proc Natl Acad Sci USA 96:3836–3841

    PubMed  CAS  Google Scholar 

  • Lee JT, Strauss WM, Dausman JA, Jaenisch R (1996) A 450 kb transgene displays properties of the mammalian X-inactivation center. Cell 86:83–94

    PubMed  CAS  Google Scholar 

  • Li N, Carrel L (2008) Escape from X chromosome inactivation is an intrinsic property of the Jarid1c locus. Proc Natl Acad Sci USA 105:17055–17060

    PubMed  CAS  Google Scholar 

  • Lifschytz E, Lindsley DL (1972) The role of X-chromosome inactivation during spermatogenesis (Drosophila-allocycly-chromosome evolution-male sterility-dosage compensation). Proc Natl Acad Sci USA 69:182–186

    PubMed  CAS  Google Scholar 

  • Linder D, Gartler SM (1965) Glucose-6-phosphate dehydrogenase mosaicism: utilization as a cell marker in the study of leiomyomas. Science 150:67–69

    PubMed  CAS  Google Scholar 

  • Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L). Nature 190:372–373

    PubMed  CAS  Google Scholar 

  • Lyon MF (2000) LINE-1 elements and X chromosome inactivation: a function for “junk” DNA? Proc Natl Acad Sci USA 97:6248–6249

    PubMed  CAS  Google Scholar 

  • Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55–70

    PubMed  CAS  Google Scholar 

  • Mak W, Nesterova TB, de Napoles M, Appanah R, Yamanaka S, Otte AP, Brockdorff N (2004) Reactivation of the paternal X chromosome in early mouse embryos. Science 303:666–669

    PubMed  CAS  Google Scholar 

  • Marahrens Y, Panning B, Dausman J, Strauss W, Jaenisch R (1997) Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 11:156–166

    PubMed  CAS  Google Scholar 

  • Martin GR, Epstein CJ, Travis B, Tucker G, Yatziv S, Martin DW Jr, Clift S, Cohen S (1978) X-chromosome inactivation during differentiation of female teratocarcinoma stem cells in vitro. Nature 271:329–333

    PubMed  CAS  Google Scholar 

  • McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183

    PubMed  CAS  Google Scholar 

  • McLaren A, Monk M (1981) X-chromosome activity in the germ cells of sex-reversed mouse embryos. J Reprod Fertil 63:533–537

    PubMed  CAS  Google Scholar 

  • McMahon A, Fosten M, Monk M (1981) Random X-chromosome inactivation in female primordial germ cells in the mouse. J Embryol Exp Morphol 64:251–258

    PubMed  CAS  Google Scholar 

  • McMahon A, Fosten M, Monk M (1983) X-chromosome inactivation mosaicism in the three germ layers and the germ line of the mouse embryo. J Embryol Exp Morphol 74:207–220

    PubMed  CAS  Google Scholar 

  • Monk M, Harper MI (1979) Sequential X chromosome inactivation coupled with cellular differentiation in early mouse embryos. Nature 281:311–313

    PubMed  CAS  Google Scholar 

  • Monk M, McLaren A (1981) X-chromosome activity in foetal germ cells of the mouse. J Embryol Exp Morphol 63:75–84

    PubMed  CAS  Google Scholar 

  • Morey C, Avner P (2011) The demoiselle of X-inactivation: 50 years old and as trendy and mesmerizing as ever. PLoS Genet 7:e1002212

    PubMed  CAS  Google Scholar 

  • Namekawa SH, Park PJ, Zhang LF, Shima JE, McCarrey JR, Griswold MD, Lee JT (2006) Postmeiotic sex chromatin in the male germline of mice. Curr Biol 16:660–667

    PubMed  CAS  Google Scholar 

  • Namekawa SH, Payer B, Huynh KD, Jaenisch R, Lee JT (2010) Two-step imprinted X inactivation: repeat versus genic silencing in the mouse. Mol Cell Biol 30:3187–3205

    PubMed  CAS  Google Scholar 

  • Navarro P, Chambers I, Karwacki-Neisius V, Chureau C, Morey C, Rougeulle C, Avner P (2008) Molecular coupling of Xist regulation and pluripotency. Science 321:1693–1695

    PubMed  CAS  Google Scholar 

  • Navarro P, Oldfield A, Legoupi J, Festuccia N, Dubois A, Attia M, Schoorlemmer J, Rougeulle C, Chambers I, Avner P (2010) Molecular coupling of Tsix regulation and pluripotency. Nature 468:457–460

    PubMed  CAS  Google Scholar 

  • Ogawa Y, Lee JT (2003) Xite, X-inactivation intergenic transcription elements that regulate the probability of choice. Mol Cell 11:731–743

    PubMed  CAS  Google Scholar 

  • Ohno S, Kaplan WD, Kinosita R (1959) Formation of the sex chromatin by a single X-chromosome in liver cells of Rattus norvegicus. Exp Cell Res 18:415–418

    PubMed  CAS  Google Scholar 

  • Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E (2004) Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303:644–649

    PubMed  CAS  Google Scholar 

  • Panning B, Dausman J, Jaenisch R (1997) X chromosome inactivation is mediated by Xist RNA stabilization. Cell 90:907–916

    PubMed  CAS  Google Scholar 

  • Payer B, Lee JT (2008) X chromosome dosage compensation: how mammals keep the balance. Annu Rev Genet 42:733–772

    PubMed  CAS  Google Scholar 

  • Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N (1996) Requirement for Xist in X chromosome inactivation. Nature 379:131–137

    PubMed  CAS  Google Scholar 

  • Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, de la Cruz CC, Otte AP, Panning B, Zhang Y (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300:131–135

    PubMed  CAS  Google Scholar 

  • Plath K, Talbot D, Hamer KM, Otte AP, Yang TP, Jaenisch R, Panning B (2004) Developmentally regulated alterations in Polycomb repressive complex 1 proteins on the inactive X chromosome. J Cell Biol 167:1025–1035

    PubMed  CAS  Google Scholar 

  • Puck JM, Willard HF (1998) X inactivation in females with X-linked disease. N Engl J Med 338:325–328

    PubMed  CAS  Google Scholar 

  • Pullirsch D, Hartel R, Kishimoto H, Leeb M, Steiner G, Wutz A (2010) The Trithorax group protein Ash2l and Saf-A are recruited to the inactive X chromosome at the onset of stable X inactivation. Development 137:935–943

    PubMed  CAS  Google Scholar 

  • Rastan S, Robertson EJ (1985) X-chromosome deletions in embryo-derived (EK) cell lines associated with lack of X-chromosome inactivation. J Embryol Exp Morphol 90:379–388

    PubMed  CAS  Google Scholar 

  • Reinius B, Shi C, Hengshuo L, Sandhu KS, Radomska KJ, Rosen GD, Lu L, Kullander K, Williams RW, Jazin E (2010) Female-biased expression of long non-coding RNAs in domains that escape X-inactivation in mouse. BMC Genomics 11:614

    PubMed  Google Scholar 

  • Russell LB (1963) Mammalian X-chromosome action: inactivation limited in spread and region of origin. Science 140:976–978

    PubMed  CAS  Google Scholar 

  • Russell WL, Russell LB, Gower JS (1959) Exceptional inheritance of a sex-linked gene in the mouse explained on the basis that the X/O sex-chromosome constitution is female. Proc Natl Acad Sci USA 45:554–560

    PubMed  CAS  Google Scholar 

  • Sharman GB (1971) Late DNA replication in the paternally derived X chromosome of female kangaroos. Nature 230:231–232

    PubMed  CAS  Google Scholar 

  • Silva J, Mak W, Zvetkova I, Appanah R, Nesterova TB, Webster Z, Peters AH, Jenuwein T, Otte AP, Brockdorff N (2003) Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev Cell 4:481–495

    PubMed  CAS  Google Scholar 

  • Stavropoulos N, Lu N, Lee JT (2001) A functional role for Tsix transcription in blocking Xist RNA accumulation but not in X-chromosome choice. Proc Natl Acad Sci USA 98:10232–10237

    PubMed  CAS  Google Scholar 

  • Sugimoto M, Abe K (2007) X chromosome reactivation initiates in nascent primordial germ cells in mice. PLoS Genet 3:e116

    PubMed  Google Scholar 

  • Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–550

    PubMed  CAS  Google Scholar 

  • Tada T, Obata Y, Tada M, Goto Y, Nakatsuji N, Tan S, Kono T, Takagi N (2000) Imprint switching for non-random X-chromosome inactivation during mouse oocyte growth. Development 127:3101–3105

    PubMed  CAS  Google Scholar 

  • Takagi N, Sasaki M (1975) Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256:640–642

    PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    PubMed  CAS  Google Scholar 

  • Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J (1998) Promotion of trophoblast stem cell proliferation by FGF4. Science 282:2072–2075

    PubMed  CAS  Google Scholar 

  • Tian D, Sun S, Lee JT (2010) The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 143:390–403

    PubMed  CAS  Google Scholar 

  • Turner JM (2007) Meiotic sex chromosome inactivation. Development 134:1823–1831

    PubMed  CAS  Google Scholar 

  • Turner JM, Mahadevaiah SK, Ellis PJ, Mitchell MJ, Burgoyne PS (2006) Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids. Dev Cell 10:521–529

    PubMed  CAS  Google Scholar 

  • Vigneau S, Augui S, Navarro P, Avner P, Clerc P (2006) An essential role for the DXPas34 tandem repeat and Tsix transcription in the counting process of X chromosome inactivation. Proc Natl Acad Sci USA 103:7390–7395

    PubMed  CAS  Google Scholar 

  • Wutz A, Jaenisch R (2000) A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol Cell 5:695–705

    PubMed  CAS  Google Scholar 

  • Xu N, Donohoe ME, Silva SS, Lee JT (2007) Evidence that homologous X-chromosome pairing requires transcription and Ctcf protein. Nat Genet 39:1390–1396

    PubMed  CAS  Google Scholar 

  • Xu N, Tsai CL, Lee JT (2006) Transient homologous chromosome pairing marks the onset of X inactivation. Science 311:1149–1152

    PubMed  CAS  Google Scholar 

  • Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756

    PubMed  CAS  Google Scholar 

  • Zheng W, Liu K (2012) Maternal control of mouse preimplantation development. In: Kubiak JZ (ed) Results and problems in cell differentiation. Springer-Verlag, Heidelberg

    Google Scholar 

Download references

Acknowledgements

I am grateful to the members of my lab for their valuable input on this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary E. Donohoe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Donohoe, M.E. (2012). Balancing the Dose in the Mouse. In: Kubiak, J. (eds) Mouse Development. Results and Problems in Cell Differentiation, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30406-4_13

Download citation

Publish with us

Policies and ethics