AHDAM: An Asymmetric Homogeneous with Dynamic Allocator Manycore Chip

  • Charly Bechara
  • Nicolas Ventroux
  • Daniel Etiemble
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7174)


The future high-end embedded systems applications are characterized by their computation-intensive workloads, their high-level of parallelism, their large data-set requirements, and their dynamism. Those applications require highly-efficient manycore architectures. In response to this problem, we designed an asymmetric homogeneous with dynamic allocator manycore architecture, called AHDAM chip. AHDAM chip exploits the parallelism on all its granularity levels. It implements multithreading techniques to increase the processors’ utilization. We designed an easy programming model and reused an automatic compilation and application parallelization tool. To study its performance, we used the radio spectrum sensing application from the telecommunication domain. On a simulation framework, we evaluated sequential and parallel versions of the application on 2 platforms: single processor, and AHDAM chip with a variable number of processors. The results show that the application on the AHDAM chip has an execution time 574 times faster than on the single-processor system, while meeting the real-time deadline and occupying 51.92 mm2 at 40 nm technology.


Manycore asymmetric multithreaded processors dynamic applications embedded systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Duranton, M., Yehia, S., De Sutter, B., De Bosschere, K., Cohen, A., Falsafi, B., Gaydadjiev, G., Katevenis, M., Maebe, J., Munk, H., Navarro, N., Ramirez, A., Temam, O., Valero, M.: The HiPEAC Vision. HiPEAC Network of Excellence (2010)Google Scholar
  2. 2.
    Lacassagne, L., Zavidovique, B.: Light speed labeling: efficient connected component labeling on RISC architectures. Journal of Real-Time Image Processing, 1–19 (2009), doi:10.1007/s11554-009-0134-0Google Scholar
  3. 3.
    Wall, D.W.: Limits of instruction-level parallelism. In: Int’l Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Santa Clara, USA (April 1991)Google Scholar
  4. 4.
    Bertogna, M., Cirinei, M., Lipari, G.: Schedulability Analysis of Global Scheduling Algorithms on Multiprocessor Platforms. IEEE Transactions on Parallel and Distributed Systems 20(4), 553–566 (2008)CrossRefGoogle Scholar
  5. 5.
    Ventroux, N., David, R.: The SCMP architecture: A Heterogeneous Multiprocessor System-on-Chip for Embedded Applications. Eurasip (2009)Google Scholar
  6. 6.
    HPC Project: PAR4ALL tool,
  7. 7.
  8. 8.
    Muralimanohar, N., Balasubramonian, R.: CACTI 6.0: A Tool to Model Large CachesGoogle Scholar
  9. 9.
    Riley, M.W., Warnock, J.D., Wendel, D.F.: Cell Broadband Engine processor: Design and implementation. IBM Journal of Research and Development 51(5), 545–557 (2007)CrossRefGoogle Scholar
  10. 10.
    Guerre, A., Ventroux, N., David, R., Merigot, A.: Hierarchical Network-on-Chip for Embedded Many-Core Architectures. In: 2010 Fourth ACM/IEEE International Symposium on Networks-on-Chip (NOCS), pp. 189–196 (May 2010)Google Scholar
  11. 11.
    Bechara, C., Ventroux, N., Etiemble, D.: Comparison of different thread scheduling strategies for Asymmetric Chip MultiThreading architectures in embedded systems. In: 14th Euromicro Conference on Digital System Design (DSD 2011), Oulu, Finland (September 2011)Google Scholar
  12. 12.
    Ventroux, N., Sassolas, T., David, R., Blanc, G., Guerre, A., Bechara, C.: SESAM extension for fast MPSoC architectural exploration and dynamic streaming applications. In: 2010 18th IEEE/IFIP on VLSI System on Chip Conference (VLSI-SoC), pp. 341–346 (September 2010)Google Scholar
  13. 13.
    Bechara, C., Ventroux, N., Etiemble, D.: Towards a Parameterizable cycle-accurate ISS in ArchC. In: IEEE International Conference on Computer Systems and Applications (AICCSA), Hammamet, Tunisia (May 2010)Google Scholar
  14. 14.
    Middha, B., Gangwar, A., Kumar, A., Balakrishnan, M., Ienne, P.: A Trimaran based framework for exploring the design space of VLIW ASIPs with coarse grain functional units, pp. 2–7 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Charly Bechara
    • 1
  • Nicolas Ventroux
    • 1
  • Daniel Etiemble
    • 2
  1. 1.CEA, LIST, Embedded Computing LaboratoryGif-sur-YvetteFrance
  2. 2.Laboratoire de Recherche en InformatiqueUniversité Paris SudOrsayFrance

Personalised recommendations