Advertisement

Optimizing the Update Packet Stream for Web Applications

  • Muthuprasanna Muthusrinivasan
  • Manimaran Govindarasu
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 66)

Abstract

The Internet has evolved to an extent where users now expect any-where any-time and any-form access to their personalized data and applications of choice. However providing a coherent (seamless) user experience across multiple devices has been relatively hard to achieve. While the how to sync problem has been well studied in literature, the complementary when to sync problem has remained relatively unexplored. While frequent updates providing higher user satisfaction/ retention are naturally more desirable than sparse updates, the steadily escalating resource costs are a significant bottleneck. We thus propose extensions to the traditional periodic refresh model based on an adaptive smart sync approach that enables variable rate updates closely modeling expected user behavior over time. An experimental evaluation on a sizeable subset of users of the GMAIL web interface further indicates that the proposed refresh policy can achieve the best of both worlds - limited resource provisioning and minimal user-perceived delays.

Keywords

data synchronization web applications cloud computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Website of the world’s first-ever web server, http://info.cern.ch
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press (2001)Google Scholar
  8. 8.
    Kautz, W.: Fibonacci codes for synchronization control. IEEE Trans. on Information Theory 11(2), 284–292 (1965)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kistler, J.J., Satyanarayanan, M.: Disconnected Operation in the Coda File System. ACM TOCS 10(1), 3–25 (1992)CrossRefGoogle Scholar
  10. 10.
    Liao, T.L., Tsai, S.H.: Adaptive synchronization of chaotic systems and its application to secure communications. Chaos, Solitons, Fractals 11(9), 1387–1396 (2000)CrossRefMATHGoogle Scholar
  11. 11.
    Mellor-Crummey, J., Scott, M.: Algorithms for scalable synchronization on shared-memory multiprocessors. ACM TOCS 9(1), 21–65 (1991)CrossRefGoogle Scholar
  12. 12.
    Kopetz, H., Ochsenreiter, W.: Clock synchronization in distributed real-time systems. IEEE Trans. on Computers 36(8), 933–940 (1987)CrossRefMATHGoogle Scholar
  13. 13.
    Bernstein, P., Goodman, N.: Timestamp-based algorithms for concurrency control in distributed database systems. In: VLDB, pp. 285–300 (1980)Google Scholar
  14. 14.
  15. 15.
    Minsky, Y., Trachtenberg, A., Zippel, R.: Set reconciliation with nearly optimal communication complexity. IEEE Trans. on Info. Theory 49(9), 2213–2218 (2003)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Starobinski, D., Trachtenberg, A., Agarwal, S.: Efficient PDA synchronization. IEEE Trans. on Mobile Computing 2(1), 40–51 (2003)CrossRefGoogle Scholar
  17. 17.
    Fan, L., et al.: Summary Cache: A Scalable Wide-Area Web Cache Sharing Protocol. IEEE/ACM ToN 8(3), 281–293 (2000)MathSciNetCrossRefGoogle Scholar
  18. 18.
  19. 19.
  20. 20.
  21. 21.
    Open Mobile Alliance, http://www.openmobilealliance.org
  22. 22.
  23. 23.
    Bozdag, E., Mesbah, A., Duersen, A.V.: A Comparison of Push and Pull Techniques for Ajax, CoRR (2007), http://arxiv.org/abs/0706.3984
  24. 24.
    Bozdag, E., Duersen, A.V.: An Adaptive Push/Pull Algorithm for AJAX Applications. In: AEWSE, pp. 95–100 (2008)Google Scholar
  25. 25.
    Low Latency Data for the Browser, http://alex.dojotoolkit.org/?p=545
  26. 26.
  27. 27.
  28. 28.
  29. 29.
    The official GMAIL Blog, http://gmailblog.blogspot.com
  30. 30.
    Ghemawat, S., Gobioff, H., Leung, S.: The Google File System. In: ACM SOSP (2003)Google Scholar
  31. 31.
    Pike, R., Dorward, S., Griesemer, R., Quinlan, S.: Interpreting the Data: Parallel Analysis with Sawzall. Scientific Programming Journal 13(4), 277–298 (2005)CrossRefGoogle Scholar
  32. 32.
    Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In: OSDI, pp. 137–150 (2004)Google Scholar
  33. 33.
    Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows, M., Chandra, T., Fikes, A., Gruber, R.: Bigtable: A Distributed Storage System for Structured Data. In: OSDI, pp. 205–218 (2006)Google Scholar
  34. 34.
  35. 35.

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • Muthuprasanna Muthusrinivasan
    • 1
  • Manimaran Govindarasu
    • 2
  1. 1.Google Inc.Mountain ViewUSA
  2. 2.Iowa State UniversityAmesUSA

Personalised recommendations