Skip to main content

Hybrid Demand Oblivious Routing: Hyper-cubic Partitions and Theoretical Upper Bounds

  • Conference paper
Broadband Communications, Networks, and Systems (BROADNETS 2010)

Summary

Traditionally, network routing was optimized with respect to an expected traffic matrix, which left the network in a suboptimal state if user traffic did not match expectations. A demand-oblivious routing is, contrarily, optimized with respect to all possible traffic matrices, obviating the need for traffic matrix estimation. Oblivious routing is a fundamentally distributed scheme, so it can be implemented easily. Unfortunately, in certain cases it may cause unwanted link over-utilization. Recently, we have introduced a hybrid centralized-distributed method to mitigate this shortcoming. However, our scheme did not provide a theoretical upper bound for the link over-utilization. In this paper, we tackle the problem again from a different perspective. Based on a novel hyper-cubic partition of the demand space, we construct a new algorithm that readily delivers the theoretical bounds. Simulation results show the theoretical and practical significance of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awduche, D., Chiu, A., Elwalid, A., Widjaja, I., Xiao, X.: Overview and principles of Internet traffic engineering. RFC 3272 (May 2002)

    Google Scholar 

  2. Cantor, D.G., Gerla, M.: Optimal routing in a packet-switched computer network. IEEE Transactions on Computer 23(10), 1062–1069 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fortz, B., Rexford, J., Thorup, M.: Traffic engineering with traditional IP routing protocols. IEEE Communications Magazine 40(10), 118–124 (2002)

    Article  Google Scholar 

  4. Roughan, M., Thorup, M., Zhang, Y.: Traffic engineering with estimated traffic matrices. In: IMC 2003: Proceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement, pp. 248–258 (2003)

    Google Scholar 

  5. Zhang, C., Liu, Y., Gong, W., Moll, J., Towsley, R.D.: On optimal routing with multiple traffic matrices. In: INFOCOM 2005, vol. 1, pp. 607–618 (2005)

    Google Scholar 

  6. Medhi, D.: Multi-hour, multi-traffic class network design for virtual path-based dynamically reconfigurable wide-area ATM networks. IEEE/ACM Transactions on Networking 3(6), 809–818 (1995)

    Article  Google Scholar 

  7. Wang, H., Xie, H., Qiu, L., Yang, Y.R., Zhang, Y., Greenberg, A.: COPE: traffic engineering in dynamic networks. SIGCOMM Comput. Commun. Rev. 36(4), 99–110 (2006)

    Article  Google Scholar 

  8. Bertsekas, D.P.: Dynamic behavior of shortest path routing algorithms for communication networks. IEEE Trans. on Automatic Control 27, 60–74 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chiang, M., Low, S.H., Calderbank, A.R., Doyle, J.C.: Layering as optimization decomposition: A mathematical theory of network architectures. Proceedings of the IEEE 95(1), 255–312 (2007)

    Article  Google Scholar 

  10. He, J., Bresler, M., Chiang, M., Rexford, J.: Towards robust multi-layer traffic engineering: Optimization of congestion control and routing. IEEE Journal on Selected Areas in Communications 25(5), 868–880 (2007)

    Article  Google Scholar 

  11. Lagoa, C.M., Che, H., Movsichoff, B.A.: Adaptive control algorithms for decentralized optimal traffic engineering in the internet. IEEE/ACM Trans. Netw. 12(3), 415–428 (2004)

    Article  Google Scholar 

  12. Kandula, S., Katabi, D., Davie, B., Charny, A.: Walking the Tightrope: Responsive Yet Stable Traffic Engineering. In: ACM SIGCOMM 2005 (August 2005)

    Google Scholar 

  13. Fischer, S., Kammenhuber, N., Feldmann, A.: REPLEX: dynamic traffic engineering based on wardrop routing policies. In: Proceedings of CoNEXT 2006, pp. 1–12 (2006)

    Google Scholar 

  14. Applegate, D., Cohen, E.: Making intra-domain routing robust to changing and uncertain traffic demands: understanding fundamental tradeoffs. In: Proceedings of SIGCOMM 2003, pp. 313–324 (2003)

    Google Scholar 

  15. Räcke, H.: Minimizing congestion in general networks. In: FOCS 2002, pp. 43–52 (2002)

    Google Scholar 

  16. Azar, Y., Cohen, E., Fiat, A., Kaplan, H., Räcke, H.: Optimal oblivious routing in polynomial time. J. Comput. Syst. Sci. 69(3), 383–394 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wellons, J., Xue, Y.: Oblivious routing for wireless mesh networks. In: ICC 2008, pp. 2969–2973 (May 2008)

    Google Scholar 

  18. Li, Y., Bai, B., Harms, J.J., Holte, R.C.: Stable and Robust Multipath Oblivious Routing for Traffic Engineering. In: Mason, L.G., Drwiega, T., Yan, J. (eds.) ITC 2007. LNCS, vol. 4516, pp. 129–140. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Applegate, D., Breslau, L., Cohen, E.: Coping with network failures: routing strategies for optimal demand oblivious restoration. SIGMETRICS Perform. Eval. Rev. 32(1), 270–281 (2004)

    Article  Google Scholar 

  20. Hajiaghayi, M., Kim, J., Leighton, T., Räcke, H.: Oblivious routing in directed graphs with random demands. In: STOC 2005, pp. 193–201 (2005)

    Google Scholar 

  21. Bansal, N., Blum, A., Chawla, S., Meyerson, A.: Online oblivious routing. In: SPAA 2003, pp. 44–49 (2003)

    Google Scholar 

  22. Towles, B., Dally, W.: Worst-case traffic for oblivious routing functions. In: SPAA 2002, pp. 1–8 (2002)

    Google Scholar 

  23. Rétvári, G., Németh, G.: Demand-oblivious routing: distributed vs. centralized approaches. In: INFOCOM 2010 (March 2010)

    Google Scholar 

  24. Rétvári, G., Bíró, J.J., Cinkler, T.: Fairness in capacitated networks: A polyhedral approach. In: INFOCOM 2007, vol. 1, pp. 1604–1612 (May 2007)

    Google Scholar 

  25. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  26. Grünbaum, B.: Convex Polytopes. John Wiley & Sons (1967)

    Google Scholar 

  27. Mahajan, R., Spring, N., Wetherall, D., Anderson, T.: Inferring link weights using end-to-end measurements. In: IMW 2002: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Measurment, pp. 231–236 (2002)

    Google Scholar 

  28. Rétvári, G., Németh, G.: On optimal rate-adaptive routing. In: ISCC 2010, pp. 605–610 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Németh, G., Rétvári, G. (2012). Hybrid Demand Oblivious Routing: Hyper-cubic Partitions and Theoretical Upper Bounds. In: Tomkos, I., Bouras, C.J., Ellinas, G., Demestichas, P., Sinha, P. (eds) Broadband Communications, Networks, and Systems. BROADNETS 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30376-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30376-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30375-3

  • Online ISBN: 978-3-642-30376-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics