Green Wireless Networks through Exploitation of Correlations

(Invited Paper)
  • Frank Oldewurtel
  • Petri Mähönen
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 66)


Energy-efficient wireless networks are essential to reduce the effect of global warming and to minimize the operational costs of future networks. In this paper we investigate approaches exploiting spatial correlations that offer a high potential to significantly decrease the total energy consumption thus enabling “green” wireless networks. In particular, we analyze the impact of distributed compression and optimized node deployments on the energy-efficiency of networks. Furthermore, we present results on the operational lifetime of networks which is often a major performance criterion from applications’ perspective.


green networking energy consumption spatial correlation distributed compression deployment strategies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hansen, J., Sato, M., Kharecha, P., Russell, G., Lea, D., Siddal, M.: Climate change and Trace gases. Philosophical Transactions of Royal Society 365, 1925–1954 (2007)CrossRefGoogle Scholar
  2. 2.
    McKinsey: The Impact of ICT on Global Emissions. Technical report, Note: on behalf of United Nations Environment Management Group (2007)Google Scholar
  3. 3.
    Fehske, A., Richter, F., Fettweis, G.P.: Energy Efficiency Improvements through Micro Sites in Cellular Mobile Radio Networks. In: Proceedings of Int. Workshop on Green Communications, in conjunction with GLOBECOM, Honolulu, USA, pp. 1–5 (2009)Google Scholar
  4. 4.
    Oldewurtel, F., Foks, M., Mähönen, P.: On a Practical Distributed Source Coding Scheme for Wireless Sensor Networks. In: Proceedings of the IEEE Vehicular Technology Conference (VTC spring), Marina Bay, Singapore, pp. 228–232 (2008)Google Scholar
  5. 5.
    Oldewurtel, F., Riihijärvi, J., Mähönen, P.: Efficiency of Distributed Compression and its Dependence on Sensor Node Deployments. In: Proceedings of the IEEE Vehicular Technology Conference (VTC spring), Taipei, Taiwan, pp. 1–5 (2010)Google Scholar
  6. 6.
    Baek, S.J., de Veciana, G., Su, X.: Minimizing Energy Consumption in Large-scale Sensor Networks through Distributed Data Compression and Hierarchical Aggregation. IEEE Journal on Selected Areas in Communications 22(6), 1130–1140 (2004)CrossRefGoogle Scholar
  7. 7.
    Cristescu, R., Beferull-Lozano, B., Vetterli, M.: On Network Correlated Data Gathering. In: Proceedings of the INFOCOM, Hong Kong, pp. 2571–2582 (2004)Google Scholar
  8. 8.
    Oldewurtel, F., Mähönen, P.: Efficiency Analysis and Derivation of Enhanced Deployment Models for Sensor Networks. In: International Journal of Ad Hoc and Ubiquitous Computing, IJAHUC (2010) (note: accepted)Google Scholar
  9. 9.
    Oldewurtel, F., Mähönen, P.: Analysis of Enhanced Deployment Models for Sensor Networks. In: Proceedings of the IEEE Vehicular Technology Conference (VTC spring), Taipei, Taiwan, pp. 1–5 (2010)Google Scholar
  10. 10.
    Yang, S., Li, M., Wu, J.: Scan-Based Movement-Assisted Sensor Deployment Methods in Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems 18(8), 1108–1121 (2007)CrossRefGoogle Scholar
  11. 11.
    Ganesan, D., Cristescu, R., Beferull-Lozano, B.: Power-efficient Sensor Placement and Transmission Structure for Data Gathering under Distortion Constraints. ACM Transactions on Sensor Networks (TOSN) 2(2), 155–181 (2006)CrossRefGoogle Scholar
  12. 12.
    Pattem, S., Krishnamachari, B., Govindan, R.: The Impact of Spatial Correlation on Routing with Compression in Wireless Sensor Networks. ACM Transactions on Sensor Networks (TOSN) 4(4), 1–33 (2008)CrossRefGoogle Scholar
  13. 13.
    Chou, J., Petrovic, D., Ramchandran, K.: Tracking and Exploiting Correlations in Dense Sensor Networks. In: Proceedings of the Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, pp. 39–43 (2002)Google Scholar
  14. 14.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, USA (2006)zbMATHGoogle Scholar
  15. 15.
    Slepian, D., Wolf, J.: Noiseless Coding of Correlated Information Sources. IEEE Transactions on Information Theory 19(4), 471–480 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Xiong, Z., Liveris, A.D., Cheng, S.: Distributed Source Coding for Sensor Networks. IEEE Signal Processing 21(5), 80–94 (2004)CrossRefGoogle Scholar
  17. 17.
    Jindal, A., Psounis, K.: Modeling Spatially Correlated Data in Sensor Networks. ACM Transactions on Sensor Networks (TOSN) 2(4), 466–499 (2006)CrossRefGoogle Scholar
  18. 18.
    Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and its Applications. Wiley, USA (1995)zbMATHGoogle Scholar
  19. 19.
    Thomas, M.: A Generalization of Poisson’s Binomial Limit for Use in Ecology. Biometrika 36, 18–25 (1949)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Gilbert, E.N.: Capacity of a Bursty-Noise Channel. Bell Systems Technical Journal 39(9), 1253–1265 (1960)CrossRefGoogle Scholar
  21. 21.
    Ebert, J.-P., Willig, A., Wolisz, A.: A Gilbert-Elliot Bit Error Model and the Efficient Use in Packet Level Simulation. TKN technical report TKN-99-002 (1999)Google Scholar
  22. 22.
    Fasolo, E., Rossi, M., Widmer, J., Zorzi, M.: In-network Aggregation Techniques for Wireless Sensor Networks: a survey. IEEE Wireless Communications 14(2), 70–87 (2007)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • Frank Oldewurtel
    • 1
  • Petri Mähönen
    • 1
  1. 1.Institute for Networked SystemsRWTH Aachen UniversityAachenGermany

Personalised recommendations