Advertisement

Ambient Intelligence in Network Management

  • Mary Luz Mouronte
  • Pilar Cano
  • Miguel Ángel Fernández
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 66)

Abstract

This paper presents a technical method for solving the main provisioning problems on transmission networks automatically: communications, naming, misalignments, etc. This solution incorporates users’ experience and business knowledge in expert agents which execute specific actions on the Network Management System (NMS) when an error occurs. The human intervention is reduced so that OPEX and network management are improved.

This paper gives an overview of the NMS of Telefónica España (GEISER), where the described method is applied. The framework has been verified in the actual network scenario while new features have been validated with simulated requests and tested on a real testbed.

Keywords

Network Element (NE) Network Element Manager (NEM) Network Management System (NMS) Network failures Ambient Intelligence (AmI) OPerational EXpenditure (OPEX) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mouronte, M.L., Benito, R.M., Cárdenas, J.P.: Complexity in Spanish optical fiber and SDH transport networks. Computer Physics Communications 180(4), 523–526 (2009)CrossRefzbMATHGoogle Scholar
  2. 2.
    Santiago, A., Cárdenas, J.P., Mouronte, M.L., Feliu, V., Benito, R.M.: Modeling the topology of SDH networks. International Journal of Modern Physics C 19(12), 1809–1820 (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chan, V.: Optical network architecture from the point of view of the end user and cost. IEEE Journal on Selected Areas in Communications 24(12), 1–2 (2006)CrossRefGoogle Scholar
  4. 4.
    Gasson, M., Warwick, K.: D12.2: Study on emerging AmI technologies, Future of Identity in the Information Society FIDIS Deliverables, European Union (2007)Google Scholar
  5. 5.
    Song, H., Xu, Y., Gui, X., Zhang, J., Gu, W.: Design and implementation of intelligent optical network management system. In: Proceedings of ICCT, pp. 625–628 (2003)Google Scholar
  6. 6.
    Mir, M., Banerjee, A., Mao, L., McGinnis, E., Sheikh, H., Galimberti, G., Jerphagnon, O., Ati, R., Liem, S., Gyurek, R., Tatipamula, M., Gerstel, O.: A GMPLS-controlled multi-vendor optical network demonstrating a variety of switching, control, and protection mechanisms. In: 31st European Conference. Optical Communication ECOC, vol. 2, pp. 215–216 (2005)Google Scholar
  7. 7.
    Verdi, F.L., Magalhães, M.F., Cardozo, E., Madeira, E.R., Welin, A.: A service oriented architecture-based approach for interdomain optical network services. Journal of Network and Systems Management 15(2) (2007)Google Scholar
  8. 8.
  9. 9.
    Ambient Intelligence and Home Networking for Wellness Management and Home Automation, http://www.ercim.eu/publication/Ercim_News/enw47/korhonen.html
  10. 10.
  11. 11.
  12. 12.
  13. 13.
    Mourlas, C., Germanakos, P.: Intelligent user interfaces: Adaptation and personalization systems and technologies. Information Science Reference (2009)Google Scholar
  14. 14.
    Nasoz, F., Lisetti, C.L.: Affective user modelling for adaptive intelligent user interfaces. In: HCI Intelligent Multimodal Interaction Environments, pp. 421–430 (2007)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • Mary Luz Mouronte
    • 1
    • 2
  • Pilar Cano
    • 2
  • Miguel Ángel Fernández
    • 1
    • 2
  1. 1.Universidad Carlos IIIMadridSpain
  2. 2.Telefónica Investigación y DesarrolloMadridSpain

Personalised recommendations