Detecting TCP Traffic Dynamical Changes in UMTS Networks

  • Ioannis Vasalos
  • Averkios Vasalos
  • Heung-Gyoon Ryu
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 66)


This paper presents a study of the methodology for the detection of congestion epochs and data transmission dynamical changes over mobile connections in the Universal Mobile Telecommunications System (UMTS) network. Dynamical changes in the data traffic occur in the Transmission Control Protocol (TCP), which is the protocol that regulates the data transmission inside the network. Using the concept of the recently introduced natural complexity measure of the Permutation Entropy (PE), the dynamical characteristics of the TCP inside the UMTS network are studied. It is shown that the PE can be effectively used to detect congestion epochs and the timely change in the dynamical pattern of the data transmission as regulated by the TCP. This is of crucial importance in order to prevent extended congestion epochs and the deterioration of the Quality of Service (QoS) in mobile networks.


TCP UMTS Permutation Entropy Data Traffic Dynamics Network Congestion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Walke, B.H.: Mobile Radio Networks, 2nd edn. Wiley, England (2002)Google Scholar
  2. 2.
    Pointon, C.T., Carrasco, R.A., Gell, M.A.: Complex Behaviour in Nonlinear Systems. In: Modelling Future Telecommunications Systems. BT Telecommunications Series, pp. 311–344. Chapman & Hall, England (1996)CrossRefGoogle Scholar
  3. 3.
    Vasalos, I., Carrasco, R.A., Woo, W.L., Soto, I.: Nonlinear Complex Behaviour of TCP in UMTS Networks and Performance Analysis. IET Circuits Devices Syst. 2(1), 69–79 (2008)CrossRefGoogle Scholar
  4. 4.
    Vasalos, I., Carrasco, R.A.: Dynamic Complexity of TCP in UMTS Networks and Performance Evaluation. In: IEEE ICWMC 2008, The Fourth International Conference on Wireless and Mobile Communications, pp. 253–259 (August 2008)Google Scholar
  5. 5.
    Veres, A., Boda, M.: The Chaotic Nature of TCP Congestion Control. In: IEEE INFOCOM, pp. 1715–1723 (March 2000)Google Scholar
  6. 6.
    Rao, N.S.V., Gao, J., Chua, L.O.: On Dynamics of Transport Protocols over Wide-Area Internet Connections. In: Kocarev, L., Vattay, G. (eds.) Complex Dynamics in Communication Networks, Springer Complexity 2005. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Yuan, J., Mills, K.: Exploring Collective Dynamics in Communication Networks. Journal of Research of the National Institute of Standards and Technology 107(2), 179–191 (2002)CrossRefGoogle Scholar
  8. 8.
    Yuan, J., Mills, K.: Monitoring the Macroscopic Effect of DDoS Flooding Attacks. IEEE Trans. on Dependable and Secure Computing 2(4), 324–335 (2005)CrossRefGoogle Scholar
  9. 9.
    Takayasu, M., Tretyakov, A., Fukuda, K., Takayasu, H.: Phase Transition and 1/f Noise in the Internet Packet Transport. In: Schreckenberg, M., Wolf, D.E. (eds.) Traffic and Granular Flow, pp. 57–67. Springer, Singapore (1998)Google Scholar
  10. 10.
    Nucci, A., Bannerman, S.: Controlled Chaos. IEEE Spectrum, 37–42 (December 2007)Google Scholar
  11. 11.
    Band, C., Pompe, B.: Permutation Entropy – A Natural Complexity Measure for Time Series. Phys. Rev. Lett. 88, 174102 (2002)CrossRefGoogle Scholar
  12. 12.
    Cao, Y., Tung, W.W., Gao, J.B., Protopopescu, V.A., Hively, L.M.: Detecting Dynamical Changes in Time Series. Phys. Rev. E 70, 046217 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Vangala, S., Labrador, M.A.: The TCP SACK aware Snoop Protocol for TCP over Wireless Networks. In: IEEE 58th Vehicular Technology Conf., vol. 4(6-9), pp. 2624–2628 (October 2003)Google Scholar
  14. 14.
    Huang, J.J., Chang, J.F.: A New Method to Improve the Performance of TCP SACK over Wireless Links. In: IEEE 57th Vehicular Technology Conference, vol. 3, pp. 1730–1734 (April 2003)Google Scholar
  15. 15.
    Alli, K.T., Sauer, T.D.: Chaos an Introduction to Dynamical Systems. Springer, New York (1996)Google Scholar
  16. 16.
    Bohacek, S., Hespanha, J.P., Lee, J., Obraczka, K.: A Hybrid Systems Modeling Framework for Fast and Accurate Simulation of Data Communication Networks. In: ACM SIGMETRICS (June 2003)Google Scholar
  17. 17.
    Gao, J.B., Zheng, Z.M.: Direct dynamical test for deterministic chaos and optimal embedding of a chaotic time series. Phys. Rev. E 49, 3807–3814 (1994)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • Ioannis Vasalos
    • 1
  • Averkios Vasalos
    • 2
  • Heung-Gyoon Ryu
    • 3
  1. 1.Newcastle UniversityUK
  2. 2.University of BirminghamUK
  3. 3.Chungbuk National UniversityKorea

Personalised recommendations