Advertisement

Efficient Resource Allocation Algorithm for Spatial Multiuser Access in MISO OFDMA Systems

  • Vasileios D. Papoutsis
  • Ioannis G. Fraimis
  • Stavros A. Kotsopoulos
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 66)

Abstract

The problem of user selection and resource allocation for the downlink of wireless systems operating over a frequency-selective channel is investigated. It is assumed that the Base Station (BS) uses many antennas, whereas a single antenna is available to each user and Orthogonal Frequency Division Multiple Access (OFDMA) is used as a multiple access scheme. The general mathematical formulation is provided but achieving the optimal solution has a high computational cost. For practical implementation, a suboptimal, but efficient algorithm is devised that is based both on Zero Forcing (ZF) beamforming and on spatial correlation and is less complex than other approaches. The algorithm maximizes the sum of the users’ data rates subject to constraints on total available power and proportional fairness among users’ data rates. Simulation results are provided to indicate that the algorithm can satisfy the fairness criterion. Thus, the algorithm can be applied to latest-generation wireless systems that provide Quality-of-Service (QoS) guarantees.

Keywords

MISO OFDMA resource allocation Zero-Forcing proportional fairness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, J.G., Ghosh, A., Muhamed, R.: Fundamentals of WiMAX: Understanding Broadband Wireless Networking. Prentice-Hall (2007)Google Scholar
  2. 2.
    Nee, R.V., Prasad, R.: OFDM for Wireless Multimedia Communications. Artech House (2000)Google Scholar
  3. 3.
    Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University Press (2005)Google Scholar
  4. 4.
    Jang, J., Lee, K.B.: Transmit power adaptation for multiuser OFDM systems. IEEE J. Sel. Areas Commun. 21(2), 171–178 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Li, G., Liu, H.: On the Optimality of the OFDMA Network. IEEE Commun. Lett. 9(5), 438–440 (2005)CrossRefGoogle Scholar
  6. 6.
    Wong, C.Y., Cheng, R.S., Letaief, K.B., Murch, R.D.: Multiuser OFDM with Adaptive Subcarrier, Bit, and Power Allocation. IEEE J. Sel. Areas Commun. 17(10), 1747–1758 (1999)CrossRefGoogle Scholar
  7. 7.
    Kivanc, D., Li, G., Liu, H.: Computationally Efficient Bandwidth Allocation and Power Control for OFDMA. IEEE Trans. Wireless Commun. 2(6), 1150–1158 (2003)CrossRefGoogle Scholar
  8. 8.
    Mohanram, C., Bhashyam, S.: A Sub-optimal Joint Subcarrier and Power Allocation Algorithm for Multiuser OFDM. IEEE Commun. Lett. 9(8), 685–687 (2005)CrossRefGoogle Scholar
  9. 9.
    Shen, Z., Andrews, J.G., Evans, B.L.: Adaptive Resource Allocation in Multiuser OFDM Systems With Proportional Rate Constraints. IEEE Trans. Wireless Commun. 4(6), 2726–2737 (2005)CrossRefGoogle Scholar
  10. 10.
    Sadr, S., Anpalagan, A., Raahemifar, K.: Suboptimal Rate Adaptive Resource Allocation for Downlink OFDMA Systems. Intern. J. Veh. Techn. (2009)Google Scholar
  11. 11.
    Papoutsis, V.D., Fraimis, I.G., Kotsopoulos, S.A.: Fairness-aware resource allocation for the SISO downink over frequency-selective channels. In: IEEE Wireless Commun. and Networking Conf., Sydney, NSW, Australia (2010)Google Scholar
  12. 12.
    Zhang, Y.J., Letaief, K.B.: Multiuser Adaptive Subcarrier-and-Bit Allocation With Adaptive Cell Selection for OFDM Systems. IEEE Trans. Wireless Commun. 3(5), 1566–1575 (2004)CrossRefGoogle Scholar
  13. 13.
    Mao, Z., Wang, X.: Efficient Optimal and Suboptimal Radio Resource Allocation in OFDMA System. IEEE Trans. Wireless Commun. 7(2), 440–445 (2008)CrossRefGoogle Scholar
  14. 14.
    Ma, Y.: Rate-Maximization for Downlink OFDMA with Proportional Fairness. IEEE Trans. Veh. Techn. 57(5), 3267–3274 (2008)CrossRefGoogle Scholar
  15. 15.
    Biagioni, A., Fantacci, R., Marabissi, D., Tarchi, D.: Adaptive Subcarrier Allocation Schemes for Wireless OFDMA Systems in WiMAX Networks. IEEE J. Sel. Areas Commun. 27(2), 217–225 (2009)CrossRefGoogle Scholar
  16. 16.
    Goldsmith, A., Jafar, S.A., Jindal, N., Vishwanath, S.: Capacity Limits of MIMO Channels. IEEE J. Sel. Areas Commun. 21(5), 684–702 (2003)CrossRefzbMATHGoogle Scholar
  17. 17.
    Rhee, W., Cioffi, J.M.: On the Capacity of Multiuser Wireless Channels With Multiple Antennas. IEEE Trans. Inf. Theory 49(10), 2580–2595 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Weingarten, H., Steinberg, Y., Shamai, S.: The capacity region of the Gaussian MIMO broadcast channel. IEEE Trans. Inf. Theory 52(9), 3936–3964 (2006)CrossRefzbMATHGoogle Scholar
  19. 19.
    Jindal, N., Rhee, W., Viswanath, S., Jafar, S.A., Goldsmith, A.: Sum Power Iterative Water-Filling for Multi-Antenna Gaussian Broadcast Channels. IEEE Trans. Inf. Theory 51(4), 1570–1580 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Caire, G., Shamai, S.: On the Achievable Throughput of a Multiantenna Gaussian Broadcast Channel. IEEE Trans. Inf. Theory 49(7), 1691–1706 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Tu, Z., Blum, R.S.: Multiuser Diversity for a Dirty Paper Approach. IEEE Commun. Lett. 7(8), 370–372 (2003)CrossRefGoogle Scholar
  22. 22.
    Sharif, M., Hassibi, B.: A Comparison of Time-Sharing, DPC, and Beamforming for MIMO Broadcast Channels with Many Users. IEEE Trans. Commun. 55(1), 11–15 (2007)CrossRefGoogle Scholar
  23. 23.
    Spencer, Q.H., Swindlehurst, A.L., Haardt, M.: Zero-Forcing Methods for Downlink Spatial Multiplexing in Multiuser MIMO Channels. IEEE Trans. Signal Processing 52(2), 461–471 (2004)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Dimic, G., Sidiropoulos, N.D.: On Downlink Beamforming With Greedy User Selection: Performance Analysis and a Simple New Algorithm. IEEE Trans. Signal Processing 53(10), 3857–3868 (2005)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Yoo, T., Goldsmith, A.: On the Optimality of Multiantenna Broadcast Scheduling Using Zero-Forcing Beamforming. IEEE J. Sel. Areas Commun. 24(3), 528–541 (2006)CrossRefGoogle Scholar
  26. 26.
    Shen, Z., Chen, R., Andrews, J., Health Jr., R., Evans, B.L.: Low Complexity User Selection Algorithms for Multiuser MIMO Systems with Block Diagonalization. IEEE Trans. Signal Processing 54(9), 3658–3663 (2006)CrossRefGoogle Scholar
  27. 27.
    Yu, W., Lan, T.: Transmitter Optimization for the Multi-Antenna Downlink With Per-Antenna Power Constraints. IEEE Trans. Signal Processing 55(6), 2646–2660 (2007)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Fuchs, M., Galdo, G.D., Haardt, M.: Low-Complexity Space-Time-Frequency Scheduling for MIMO Systems With SDMA. IEEE Trans. Veh. Techn. 56(5), 2775–2784 (2007)CrossRefGoogle Scholar
  29. 29.
    Zhang, X., Lv, Z., Wang, W.: Performance Analysis of Multiuser Diversity in MIMO Systems with Antenna Selection. IEEE Trans. Wireless Commun. 7(1), 15–21 (2008)CrossRefGoogle Scholar
  30. 30.
    Karachontzitis, S., Toumpakaris, D.: Efficient and Low-Complexity User Selection for the Multiuser MISO Downlink. In: IEEE Personal, Indoor and Mobile Radio Commun. Symposium, Tokyo, Japan (2009)Google Scholar
  31. 31.
    Koutsopoulos, I., Tassiulas, L.: Adaptive Resource Allocation in SDMA-based Wireless Broadband Networks with OFDM Signaling. In: IEEE INFOCOM, New York, USA, vol. 3, pp. 1376–1385 (2002)Google Scholar
  32. 32.
    Tsang, Y.M., Cheng, R.S.: Optimal Resource Allocation in SDMA/Multi-Input-Single-Output/OFDM Systems under QoS and Power Constraints. In: IEEE Wireless Commun. and Networking Conf., Georgia, USA, vol. 3, pp. 1595–1600 (2004)Google Scholar
  33. 33.
    Zhang, Y.J., Letaief, K.B.: An Efficient Resource-Allocation Scheme for Spatial Multiuser Access in MIMO/OFDM Systems. IEEE Trans. on Commun. 53(1), 107–116 (2005)CrossRefGoogle Scholar
  34. 34.
    Chan, P.W.C., Cheng, R.S.: Capacity Maximization for Zero-Forcing MIMO-OFDMA Downlink Systems with Multiuser Diversity. IEEE Trans. Wireless Commun. 6(5), 1880–1889 (2007)CrossRefGoogle Scholar
  35. 35.
    Tsai, C.F., Chang, C.J., Ren, F.C., Yen, C.M.: Adaptive Radio Resource Allocation for Downlink OFDMA/SDMA Systems with Multimedia Traffic. IEEE Trans. Wireless Commun. 7(5), 1734–1743 (2008)CrossRefGoogle Scholar
  36. 36.
    Kai, S., Ying, W., Zi-xiong, C., Ping, Z.: Fairness based resource allocation for multiuser MISO-OFDMA systems with beamforming. J. China Univ. of Posts and Telec. 16(1), 38–43 (2009)CrossRefGoogle Scholar
  37. 37.
    Cover, T.M., Thomas, J.A.: Elements of Information theory. John Wiley & Sons, Inc., Hoboken (2006)zbMATHGoogle Scholar
  38. 38.
    Ibaraki, T., Katoh, N.: Resource Allocation Problems-Algorithmic Approaches, M. Garey, Ed. MIT Press (1988)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • Vasileios D. Papoutsis
    • 1
  • Ioannis G. Fraimis
    • 1
  • Stavros A. Kotsopoulos
    • 1
  1. 1.Wireless Telecommunications Laboratory, Department of Electrical and Computer EngineeringUniversity of PatrasRioGreece

Personalised recommendations