Skip to main content

The Importance and Challenges of Bayesian Parameter Learning in Systems Biology

  • Chapter
  • First Online:

Part of the book series: Contributions in Mathematical and Computational Sciences ((CMCS,volume 4))

Abstract

In the last decade a new research field has emerged: Systems Biology. Based on experimental data and using mathematical and computational methods, systems biology attempts to describe biological behavior in a quantitative dynamic way. Biological data contains a lot of noise and there is only a limited amount available due to high experimental effort and cost. Thus, for parameter estimation from this kind of data, their stochasticity and the problem of non-identifiability of model parameters has to be taken into account. One way to do this is using a Bayesian framework, where one obtains distributions over possible parameter values, and these are then further analyzed. In this article we describe the potential impact of Bayesian parameter learning on systems biology, and discuss challenges arising from a Bayesian approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C. Andrieu and J. Thoms. A tutorial on adaptive MCMC. Stat. Comput., 18:343–373, 2008.

    Article  MathSciNet  Google Scholar 

  2. S. Bandara, J. P. Schlöder, R. Eils, H. G. Bock, and T. Meyer. Optimal experimental design for parameter estimation of a cell signaling model. PLoS Comput. Biol., 5(11):e1000558, 2009.

    Google Scholar 

  3. R. J. Boys, D. J. Wilkinson, and T. B. L. Kirkwood. Bayesian inference for a discretely observed stochastic kinetic model. Stat. Comput., 18(2):125–135, 2008.

    Article  MathSciNet  Google Scholar 

  4. A. G. Busetto, C. S. Ong, and J. M. Buhmann. Optimized expected information gain for nonlinear dynamical systems. In A. P. Danyluk, L. Bottou, and M. L. Littman, editors, ICML, volume 382 of ACM International Conference Proceeding Series, page 13. ACM, 2009.

    Google Scholar 

  5. K. Chaloner and I. Verdinelli. Bayesian experimental design: A review. Statist. Sci., 10(3):273–304, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo. Phys. Lett. B, 195:216–222, 1987.

    Article  Google Scholar 

  7. M. Girolami. Bayesian inference for differential equations. Theor. Comp. Sci., 408:4–16, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Gustafson. What are the limits of posterior distributions arising from nonidentified models, and why should we care? J. Am. Stat. Assoc., 104(488):1682–1695, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. N. Gutenkunst, J. J. Waterfall, F. P. Casey, K. S. Brown, C. R. Myers, and J. P. Sethna. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput. Biol., 3(10):e189, 2007.

    Google Scholar 

  10. W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1):97–109, 1970.

    Article  MATH  Google Scholar 

  11. A. Jasra, D. A. Stephens, and C. C. Holmes. On population-based simulation for static inference. Stat. Comput., 17:263–279, 2007.

    Article  MathSciNet  Google Scholar 

  12. L. Kaderali and N. Radde. Inferring gene regulatory networks from expression data. In A. Kelemen, A. Abraham, and Y. Chen, editors, Computational Intelligence in Bioinformatics, volume 94 of Studies in Computational Intelligence, pages 33–74. Springer, Berlin, 2008.

    Chapter  Google Scholar 

  13. G. Karlebach and R. Shamir. Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol., 9:770–780, 2008.

    Article  Google Scholar 

  14. J. Kiefer. Optimum experimental designs. J. R. Stat. Soc. Series B Methodol., 21(2):272–319, 1959.

    MathSciNet  MATH  Google Scholar 

  15. C. Kreutz and J. Timmer. Systems biology: experimental design. FEBS J., 276:923–942, 2009.

    Article  Google Scholar 

  16. J. Mazur, D. Ritter, G. Reinelt, and L. Kaderali. Reconstructing nonlinear dynamic models of gene regulation using stochastic sampling. BMC Bioinformatics, 10:448, 2009.

    Article  Google Scholar 

  17. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller. Equations of state calculations by fast computing machines. J. Chem. Phys., 21(6):1087–1092, 1953.

    Article  Google Scholar 

  18. R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical report, Department of Computer Science, University of Toronto, 1993.

    Google Scholar 

  19. A. O’Hagan and J. F. C. Kingman. Curve fitting and optimal design for prediction. J. R. Stat. Soc. Series B Methodol., 40(1):1–42, 1978.

    MATH  Google Scholar 

  20. M. C. Shewry and H. P. Wynn. Maximum entropy sampling. J. Appl. Stat., 14(2):165–170, 1987.

    Article  Google Scholar 

  21. F. Steinke, M. Seeger, and K. Tsuda. Experimental design for efficient identification of gene regulatory networks using sparse Bayesian models. BMC Syst. Biol., 1:51, 2007.

    Article  Google Scholar 

  22. J. van den Berg, A. Curtis, and J. Trampert. Optimal nonlinear Bayesian experimental design: an application to amplitude versus offset experiments. Geophys. J. Int., 155(2):411–421, 2003.

    Article  Google Scholar 

  23. V. Vyshemirsky and M. Girolami. Bayesian ranking of biochemical system models. Bioinformatics, 24(6):833–839, 2008.

    Article  Google Scholar 

  24. V. Vyshemirsky and M. Girolami. BioBayes: A software package for Bayesian inference in systems biology. Bioinformatics, 24(17):1933–1934, 2008.

    Article  Google Scholar 

  25. D. J. Wilkinson. Stochastic Modelling for Systems Biology. Chapman & Hall/CRC, Boca Raton, FL, USA, 2006.

    MATH  Google Scholar 

  26. D. J. Wilkinson. Stochastic modelling for quantitative description of heterogeneous biological systems. Nat. Rev. Genet., 10:122–133, 2009.

    Article  Google Scholar 

  27. Y. Xie and B. P. Carlin. Measures of Bayesian learning and identifiability in hierarchical models. J. Stat. Plan. Inference, 136:3458–3477, 2006.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful for funding to the German Ministry of Education and Research (BMBF), grant number 0313923 (FORSYS/Viroquant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Mazur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mazur, J., Kaderali, L. (2013). The Importance and Challenges of Bayesian Parameter Learning in Systems Biology. In: Bock, H., Carraro, T., Jäger, W., Körkel, S., Rannacher, R., Schlöder, J. (eds) Model Based Parameter Estimation. Contributions in Mathematical and Computational Sciences, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30367-8_6

Download citation

Publish with us

Policies and ethics