Skip to main content

Parameter Estimation and Optimum Experimental Design for Differential Equation Models

  • Chapter
  • First Online:
Book cover Model Based Parameter Estimation

Abstract

This article reviews state-of-the-art methods for parameter estimation and optimum experimental design in optimization based modeling. For the calibration of differential equation models for nonlinear processes, constrained parameter estimation problems are considered. For their solution, numerical methods based on the boundary value problem method optimization approach consisting of multiple shooting and a generalized Gauß–Newton method are discussed. To suggest experiments that deliver data to minimize the statistical uncertainty of parameter estimates, optimum experimental design problems are formulated, an intricate class of non-standard optimal control problems, and derivative-based methods for their solution are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albersmeyer, J., Bock, H.: Sensitivity Generation in an Adaptive BDF-Method. In: H.G. Bock, E. Kostina, X. Phu, R. Rannacher (eds.) Modeling, Simulation and Optimization of Complex Processes: Proceedings of the International Conference on High Performance Scientific Computing, March 6–10, 2006, Hanoi, Vietnam, pp. 15–24. Springer Verlag Berlin Heidelberg New York (2008)

    Google Scholar 

  2. Atkinson, A.C., Donev, A.N.: Optimum Experimental Designs. Oxford University Press (1992)

    Google Scholar 

  3. Atkinson, A.C., Fedorov, V.V.: Optimal design: Experiments for discriminating between several models. Biometrika 62(2), 289 (1975)

    Google Scholar 

  4. Banga, J., Balsa-Canto, E.: Parameter estimation and optimal experimental design. Essays Biochem. 45, 195–209 (2008)

    Google Scholar 

  5. Bauer, I.: Numerische Verfahren zur Lösung von Anfangswertaufgaben und zur Generierung von ersten und zweiten Ableitungen mit Anwendungen bei Optimierungsaufgaben in Chemie und Verfahrenstechnik. Ph.D. thesis, Universität Heidelberg (1999). URL http://www.ub.uni-heidelberg.de/archiv/1513

  6. Bauer, I., Bock, H.G., Körkel, S., Schlöder, J.P.: Numerical methods for initial value problems and derivative generation for DAE models with application to optimum experimental design of chemical processes. In: F. Keil, W. Mackens, H. Voss, J. Werther (eds.) Scientific Computing in Chemical Engineering II, vol. 2, pp. 282–289. Springer-Verlag, Berlin Heidelberg (1999)

    Google Scholar 

  7. Binder, T., Kostina, E.: Robust parameter estimation in differential equations. In: H.G. Bock, T. Carraro, W. Jäger, S. Körkel, R. Rannacher, J.P. Schlöder (eds.) Model Based Parameter Estimation: Theory and Applications, Contributions in Mathematical and Computational Sciences. Springer (2012)

    Google Scholar 

  8. Bock, H.: Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen, Bonner Mathematische Schriften, vol. 183. Universität Bonn, Bonn (1987). URL http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1987.pdf

  9. Bock, H.G., Eich, E., Schlöder, J.P.: Numerical Solution of Constrained Least Squares Boundary Value Problems in Differential-Algebraic Equations. In: K. Strehmel (ed.) Differential-Algebraic Equations. Numerical Treatment of Differential Equations. BG Teubner (1988)

    Google Scholar 

  10. Bock, H.G., Körkel, S., Kostina, E., Schlöder, J.P.: Robustness aspects in parameter estimation, optimal design of experiments and optimal control. In: W. Jäger, R. Rannacher, J. Warnatz (eds.) Reactive Flows, Diffusion and Transport, pp. 117–146. Springer-Verlag, Berlin Heidelberg (2007)

    Google Scholar 

  11. Bock, H.G., Kostina, E.A., Schlöder, J.P.: Numerical methods for parameter estimation in nonlinear differential algebraic equations. GAMM-Mitteilungen 30(2), 352–375 (2007)

    Google Scholar 

  12. Chen, B.H., Asprey, S.P.: On the design of optimally informative dynamic experiments for model discrimination in multiresponse nonlinear situations. Ind. Eng. Chem. Res. 42(7), 13791390 (2003)

    Google Scholar 

  13. Dieses, A.: Numerische Verfahren zur Diskriminierung nichtlinearer Modelle für dynamische chemische Prozesse. Diplomarbeit, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen der Universität Heidelberg (1997)

    Google Scholar 

  14. Franceschini, G., Macchietto, S.: Model-based design of experiments for parameter precision: State of the art. Chemical Engineering Science 63, 4846–4872 (2008)

    Google Scholar 

  15. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2nd edn. No. 105 in Other Titles in Applied Mathematics. SIAM, Philadelphia, PA (2008). URL http://www.ec-securehost.com/SIAM/OT105.html

  16. Körkel, S.: Numerische Methoden für optimale Versuchsplanungsprobleme bei nichtlinearen DAE-Modellen. Ph.D. thesis, Universität Heidelberg, Heidelberg (2002). URL http://www.koerkel.de

  17. Körkel, S., Arellano-Garcia, H.: Online experimental design for model validation. In: R.M. de Brito Alves, C.A.O. do Nascimento, E.C.B. Jr. (eds.) Proceedings of 10th International Symposium on Process Systems Engineering — PSE2009 (2009)

    Google Scholar 

  18. Körkel, S., Arellano-Garcia, H., Schöneberger, J., Wozny, G.: Optimum experimental design for key performance indicators. In: B. Braunschweig, X. Joulia (eds.) Proceedings of 18th European Symposium on Computer Aided Process Engineering - ESCAPE 18 (2008)

    Google Scholar 

  19. Körkel, S., Bauer, I., Bock, H., Schlöder, J.: A sequential approach for nonlinear optimum experimental design in dae systems. In: Scientific Computing in Chemical Engineering II, pp. 338–345. Springer (1999)

    Google Scholar 

  20. Körkel, S., Kostina, E., Bock, H., Schlöder, J.: Numerical methods for optimal control problems in design of robust optimal experiments for nonlinear dynamic processes. Optimization Methods and Software 19, 327–338 (2004)

    Google Scholar 

  21. Moles, C.G., Mendes, P., Banga, J.R.: Parameter estimation in biochemical pathways: A comparison of global optimization methods. Genome Res. 13(11), 2467–2474 (2003)

    Google Scholar 

  22. Pukelsheim, F.: Optimal Design of Experiments. Wiley (1993)

    Google Scholar 

  23. Schlöder, J.: Numerische Methoden zur Behandlung hochdimensionaler Aufgaben der Parameteridentifizierung, Bonner Mathematische Schriften, vol. 187. Universität Bonn, Bonn (1988)

    Google Scholar 

  24. Schlöder, J.P., Bock, H.G.: Identification of rate constants in bistable chemical reaction systems. In: P. Deuflhard, E. Hairer (eds.) Inverse Problems, Progress in Scientific Computing, vol. 2, pp. 27–47. Birkhäuser Boston (1983)

    Google Scholar 

  25. Schwetlick, H.: Nonlinear parameter estimation: Models, criteria and algorithms. In: D.F. Griffiths, G.A. Watson (eds.) Numerical Analysis 1991, Proceedings of the 14th Dundee Conference on Numerical Analysis, Pitman Research Notes in Mathematics Series, vol. 260, pp. 164–193. Longman Scientific & Technical (1992)

    Google Scholar 

  26. Seber, G.A.F., Wild, C.J.: Nonlinear Regression. Wiley (1989)

    Google Scholar 

  27. Stoer, J.: On the numerical solution of constrained least-squares problems. SIAM J. Numer. Anal. 8(2), 382–411 (1971)

    Google Scholar 

  28. Telen, D., Logist, F., Derlinden, E.V., Tack, I., Impe, J.V.: Optimal experiment design for dynamic bioprocesses: a multi-objective approach. Chemical Engineering Science 78, 82–97 (2012)

    Google Scholar 

  29. Uciński, D.: Optimal Measurement Methods for Distributed Parameter System Identification. CRC Press (2005)

    Google Scholar 

  30. Uciński, D.: An optimal scanning sensor activation policy for parameter estimation of distributed systems. In: H.G. Bock, T. Carraro, W. Jäger, S. Körkel, R. Rannacher, J.P. Schlöder (eds.) Model Based Parameter Estimation: Theory and Applications, Contributions in Mathematical and Computational Sciences. Springer (2012)

    Google Scholar 

  31. Walter, S.: Structured higher-order algorithmic differentiation in the forward and reverse mode with application in optimum experimental design. Ph.D. thesis, Humboldt-Universität zu Berlin (2011)

    Google Scholar 

Download references

Acknowledgements

The authors want to thank DFG for providing excellent research conditions within the Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences. S. Körkel wants to thank BASF SE for funding his position and parts of his research group. Additional funding is granted by the German Federal Ministry for Education and Research within the initiative Mathematik für Innovationen in Industrie und Dienstleistungen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Körkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bock, H.G., Körkel, S., Schlöder, J.P. (2013). Parameter Estimation and Optimum Experimental Design for Differential Equation Models. In: Bock, H., Carraro, T., Jäger, W., Körkel, S., Rannacher, R., Schlöder, J. (eds) Model Based Parameter Estimation. Contributions in Mathematical and Computational Sciences, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30367-8_1

Download citation

Publish with us

Policies and ethics