Skip to main content

An Empirical Study of Encodings for Group MaxSAT

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7310))

Abstract

Weighted Partial MaxSAT (WPMS) is a well-known optimization variant of Boolean Satisfiability (SAT) that finds a wide range of practical applications. WPMS divides the formula in two sets of clauses: The hard clauses that must be satisfied and the soft clauses that can be unsatisfied with a penalty given by their associated weight. However, some applications may require each constraint to be modeled as a set or group of clauses. The resulting formalism is referred to as Group MaxSAT. This paper overviews Group maxSAT, and shows how several optimization problems can be modeled as Group MaxSAT. Several encodings from Group MaxSAT to standard MaxSAT are formalized and refined. A comprehensive empirical study compares the performance of several MaxSAT solvers with the proposed encodings. The results indicate that, depending on the underlying MaxSAT solver and problem domain, the solver may perform better with a given encoding than with the others.

This work was partially supported by SFI PI grant BEACON (09/IN.1/I2618).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aksoy, L., Costa, E., Flores, P.F., Monteiro, J.: Exact and approximate algorithms for the optimization of area and delay in multiple constant multiplications. IEEE Trans. on CAD of Integrated Circuits and Systems 27(6) (2008)

    Google Scholar 

  2. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (Weighted) Partial MaxSAT through Satisfiability Testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427–440. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Argelich, J., Cabiscol, A., Lynce, I., Manyà, F.: Modelling Max-CSP as Partial Max-SAT. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 1–14. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Argelich, J., Manyà, F.: Exact Max-SAT solvers for over-constrained problems. Journal of Heuristics 12(4-5), 375–392 (2006)

    Article  MATH  Google Scholar 

  5. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. JSAT 7, 59–64 (2010)

    Google Scholar 

  6. Biere, A., Heule, M., Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability (2009)

    Google Scholar 

  7. Een, N., Sörensson, N.: Translating Pseudo-Boolean Constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)

    MATH  Google Scholar 

  8. Heras, F., Larrosa, J., Givry, S., Schiex, T.: 2006 and 2007 Max-SAT evaluations: Contributed instances. Journal on Satisfiability, Boolean Modeling and Computation 4(2-4), 239–250 (2008)

    MATH  Google Scholar 

  9. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSat: An efficient weighted Max-SAT solver. Journal of Artificial Intelligence Research 31, 1–32 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search for maximum satisfiability. In: AAAI Conference on Artificial Intelligence. AAAI (2011)

    Google Scholar 

  11. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum satisfiability. In: ACM Conference on PLDI, pp. 437–446 (2011)

    Google Scholar 

  12. Kautz, H.A., Ruan, Y., Achlioptas, D., Gomes, C.P., Selman, B., Stickel, M.E.: Balance and filtering in structured satisfiable problems. In: IJCAI (2001)

    Google Scholar 

  13. Larrosa, J., Schiex, T.: Solving weighted CSP by maintaining arc consistency. Artif. Intell. 159(1-2), 1–26 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Maloberti, J., Sebag, M.: Fast theta-subsumption with constraint satisfaction algorithms. Machine Learning 55(2), 137–174 (2004)

    Article  MATH  Google Scholar 

  15. Manquinho, V., Martins, R., Lynce, I.: Improving Unsatisfiability-Based Algorithms for Boolean Optimization. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 181–193. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heras, F., Morgado, A., Marques-Silva, J. (2012). An Empirical Study of Encodings for Group MaxSAT. In: Kosseim, L., Inkpen, D. (eds) Advances in Artificial Intelligence. Canadian AI 2012. Lecture Notes in Computer Science(), vol 7310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30353-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30353-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30352-4

  • Online ISBN: 978-3-642-30353-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics