Skip to main content

Mad at Edge Crossings? Break the Edges!

  • Conference paper
Fun with Algorithms (FUN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7288))

Included in the following conference series:

Abstract

One of the main principles for the effective visualization of graphs is the avoidance of edge crossings. Around this problem, very active research has been performed with works ranging from combinatorics, to algorithmics, visualization effects, to psychological user studies. Recently, the pragmatic approach has been proposed to avoid crossings by drawing the edges only partially. Unfortunately, no formal model and efficient algorithms have been formulated to this end. We introduce the concept for drawings of graphs with partially drawn edges (PED). Therefore we consider graphs with and without given embedding and characterize PEDs with concepts like symmetry and homogeneity. For graphs without embedding we formulate a sufficient condition to guarantee a symmetric homogeneous PED, and identify a nontrivial graph class which has a symmetric homogeneous PED. For graphs with given layout we consider the variants of maximizing the shortest partially drawn edge and the total length respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall (1999)

    Google Scholar 

  2. Becker, R.A., Eick, S.G., Wilks, A.R.: Visualizing network data. IEEE Trans. Vis. Comput. Graph. 1(1), 16–28 (1995)

    Article  Google Scholar 

  3. Brandes, U., Erten, C., Estrella-Balderrama, A., Fowler, J.J., Frati, F., Geyer, M., Gutwenger, C., Hong, S.H., Kaufmann, M., Kobourov, S.G., Liotta, G., Mutzel, P., Symvonis, A.: Colored simultaneous geometric embeddings and universal pointsets. Algorithmica 60(3), 569–592 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burch, M., Vehlow, C., Konevtsova, N., Weiskopf, D.: Evaluating Partially Drawn Links for Directed Graph Edges. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 226–237. Springer, Heidelberg (2011)

    Google Scholar 

  5. Cui, W., Zhou, H., Qu, H., Wong, P.C., Li, X.: Geometry-based edge clustering for graph visualization. IEEE Transactions on Visualization and Computer Graphics 14, 1277–1284 (2008)

    Article  Google Scholar 

  6. Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings: Visualizing non-planar diagrams in a planar way. J. Graph Algorithms Appl. 9(1), 31–52 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Eppstein, D.: Separating Thickness from Geometric Thickness. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 150–161. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw., Pract. Exper. 21(11), 1129–1164 (1991)

    Article  Google Scholar 

  9. Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006)

    Article  Google Scholar 

  10. Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization. Comput. Graph. Forum 28(3), 983–990 (2009)

    Article  Google Scholar 

  11. Hui, P., Schaefer, M., Štefankovič, D.: Train Tracks and Confluent Drawings. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 318–328. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  13. Koffka, K.: Principles of Gestalt Psychology. International Library of Psychology, Philosophy and Scientific Method (1999), http://books.google.de/books?id=cLnqI3dvi4kC

  14. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Peng, D., Lua, N., Chen, W., Peng, Q.: Sideknot: Revealing relation patterns for graph visualization. To appear in IEEE Pacific Visualization Symposium (2012)

    Google Scholar 

  16. Rusu, A., Fabian, A.J., Jianu, R., Rusu, A.: Using the gestalt principle of closure to alleviate the edge crossing problem in graph drawings. In: International Conference on Information Visualisation, pp. 488–493 (2011)

    Google Scholar 

  17. yWorks GmbH: yFiles graph library, http://www.yworks.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bruckdorfer, T., Kaufmann, M. (2012). Mad at Edge Crossings? Break the Edges!. In: Kranakis, E., Krizanc, D., Luccio, F. (eds) Fun with Algorithms. FUN 2012. Lecture Notes in Computer Science, vol 7288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30347-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30347-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30346-3

  • Online ISBN: 978-3-642-30347-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics