Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 316 Accesses

Abstract

Biodistribution of medications is a major factor dictating therapy efficacy, as demonstrated by many very excellent in vitro performing drugs displaying limited in vivo efficiency. Every therapeutic first encounters the serum components, which may bind it and serve as carriers for its delivery within the body. Accordingly, serum distribution of potential drugs is a main issue of their activity, and the first step disclosed in this research. Earlier studies have focused on the interaction of the bis-sulfonated corrole metal complexes with isolated serum proteins. These investigations revealed very strong binding of the corroles to the most abundant serum proteins transferrin and albumin (with dissociation constants of 10−7–10−9 and >10−9 M, respectively). Examinations of corrole interaction with isolated lipoproteins revealed high affinity binding in this case as well, and a binding stoichiometry of about 40 corrole molecules to isolated LDL and 10 to isolated HDL. Together these results underline the need to directly explore the distribution of the corroles in whole serum, as strong binding may be outcompeted by stronger binding, and because the equilibrium between the various serum components depends also on their relative concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    HDL contains albumin (even when isolated), as may be seen from the SDS-PAGE experiments.

  2. 2.

    The effective concentration of 1-Fe for the SIN-1 induced oxidation was tenfold higher than in the copper ions induced oxidation. However, lipoprotein concentration was also increased tenfold in the former relative to the latter. See experimental section for further details.

References

  1. Liang, L.-P., Huang, J., Fulton, R., Day, B.J., Patel, M.: An orally active catalytic metalloporphyrin protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity in vivo. J. Neurosci. 27, 4326–4333 (2007)

    Article  CAS  Google Scholar 

  2. Radovits, T., et al.: The peroxynitrite decomposition catalyst FP15 improves ageing-associated cardiac and vascular dysfunction. Mech. Ageing Dev. 128, 173–181 (2007)

    Article  CAS  Google Scholar 

  3. Wu, A.S., et al.: Iron porphyrin treatment extends survival in a transgenic animal model of amyotrophic lateral sclerosis. J. Neurochem. 85, 142–150 (2003)

    Article  CAS  Google Scholar 

  4. Szabo, C., Ischiropoulos, H., Radi, R.: Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 6, 662–680 (2007)

    Article  CAS  Google Scholar 

  5. Kos, I., Benov, L., Spasojevic, I., Reboucas, J.S., Batinic-Haberle, I.: High lipophilicity of meta Mn(III) N-alkylpyridylporphyrin-based superoxide dismutase mimics compensates for their lower antioxidant potency and makes them as effective as ortho analogues in protecting superoxide dismutase-deficient Escherichia coli. J. Med. Chem. 52, 7868–7872 (2009)

    Google Scholar 

  6. Haber, A., Agadjanian, H., Medina-Kauwe, L.K., Gross, Z.: Corroles that bind with high affinity to both apo and holo transferrin. J. Inorg. Biochem. 102, 446–457 (2008)

    Article  CAS  Google Scholar 

  7. Mahammed, A., Gray, H.B., Weaver, J.J., Sorasaenee, K., Gross, Z.: Amphiphilic corroles bind tightly to human serum albumin. Bioconjug. Chem. 15, 738–746 (2004)

    Article  CAS  Google Scholar 

  8. De Smidt, P.C., Versluis, A.J., Van Berkel, T.J.C.: Properties of incorporation, redistribution, and integrity of porphyrin-low-density lipoprotein complexes. Biochemistry (Mosc.) 32, 2916–2922 (1993)

    Article  Google Scholar 

  9. Rice-Evans, C., Bruckdorfer, K.R. (eds.): Oxidative stress, Lipoproteins and Cardiovascular Dysfunction. Portland Press, London (1995)

    Google Scholar 

  10. Kontush, A., Chapman, M.J.: Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of Dyslipidemia, inflammation, and atherosclerosis. Pharmacol. Rev. 58, 342–374 (2006)

    Article  CAS  Google Scholar 

  11. Zannis, V., Chroni, A., Krieger, M.: Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J. Mol. Med. 84, 276–294 (2006)

    Article  CAS  Google Scholar 

  12. Cheung, M.C., Albers, J.J.: Distribution of high density lipoprotein particles with different apoprotein composition: particles with A-I and A-II and particles with A-I but no A-II. J. Lipid Res. 23, 747–753 (1982)

    CAS  Google Scholar 

  13. Bergmeier, C., Siekmeier, R., Gross, W.: Distribution spectrum of paraoxonase activity in HDL fractions. Clin. Chem. 50, 2309–2315 (2004)

    Article  CAS  Google Scholar 

  14. Gaidukov, L., Tawfik, D.S.: High affinity, stability, and lactonase activity of serum paraoxonase PON1 anchored on HDL with ApoA-I. Biochemistry (Mosc.) 44, 11843–11854 (2005)

    Article  CAS  Google Scholar 

  15. Aviram, M., Vaya, J.: Markers for low-density lipoprotein oxidation. Methods Enzymol. 335, 244–256 (2001)

    Article  CAS  Google Scholar 

  16. Aviram, M.: Oxidative modification of low density lipoprotein and its relation to atherosclerosis. Isr. J. Med. Sci. 31, 241–249 (1995)

    CAS  Google Scholar 

  17. Aviram, M.: Interaction of oxidized low density lipoprotein with macrophages in atherosclerosis, and the antiatherogenicity of antioxidants. Eur. J. Clin. Chem. Clin. Biochem. 34, 599–608 (1996)

    CAS  Google Scholar 

  18. Aviram, M.: Macrophage foam cell formation during early atherogenesis is determined by the balance between pro-oxidants and anti-oxidants in arterial cells and blood lipoproteins. Antioxid. Redox Signal. 1, 585–594 (1999)

    Article  CAS  Google Scholar 

  19. Smith, J.D.: Dysfunctional HDL as a diagnostic and therapeutic target. Arterioscler. Thromb. Vasc. Biol. 30, 151–155 (2010)

    Article  CAS  Google Scholar 

  20. Leeuwenburgh, C., et al.: Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, copper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J. Biol. Chem. 272, 3520–3526 (1997)

    Article  CAS  Google Scholar 

  21. Perugini, C., et al.: Different mechanisms are progressively recruited to promote Cu(II) reduction by isolated human low-density lipoprotein undergoing oxidation. Free Radical Biol. Med. 25, 519–528 (1998)

    Article  CAS  Google Scholar 

  22. Urbanski, N.K., Beresewicz, A.: Generation of *OH initiated by interaction of Fe2+ and Cu+ with dioxygen; comparison with the Fenton chemistry. Acta Biochim. Pol. 47, 951–962 (2000)

    CAS  Google Scholar 

  23. Mahammed, A., Gross, Z.: Highly efficient catalase activity of metallocorroles. Chem. Commun. 46, 7040–7042 (2010)

    Article  CAS  Google Scholar 

  24. Eckshtain, M., et al.: Superoxide dismutase activity of corrole metal complexes. Dalton Trans. (38), 7879–7882 (2009)

    Google Scholar 

  25. Esterbauer, H., et al.: Vitamin E and other lipophilic antioxidants protect LDL against oxidation. Fett Wissenschaft Technologie/Fat Sci. Technol. 91, 316–324 (1989)

    CAS  Google Scholar 

  26. Bonnefont-Rousselot, D., et al.: High density lipoproteins (HDL) and the oxidative hypothesis of atherosclerosis. Clin. Chem. Lab. Med. 37, 939 (1999)

    Article  CAS  Google Scholar 

  27. Mahammed, A., Gross, Z.: Iron and manganese corroles are potent catalysts for the decomposition of peroxynitrite. Angew. Chem. Int. Ed. 45, 6544–6547 (2006)

    Article  CAS  Google Scholar 

  28. Ducrocq, C., Blanchard, B.: Peroxynitrite: an endogenous oxidizing and nitrating agent. Cell. Mol. Life Sci. 55, 1068–1077 (1999)

    Article  CAS  Google Scholar 

  29. Martin-Romero, F.J., Gutiérrez-Martin, Y., Henao, F., Gutiérrez-Merino, C.: fluorescence measurements of steady state peroxynitrite production upon SIN-1 decomposition: NADH versus dihydrodichlorofluorescein and dihydrorhodamine 123. J. Fluoresc. 14, 17–23 (2004)

    Article  CAS  Google Scholar 

  30. Aviram, M., Rosenblat, M.: Oxidative stress in cardiovascular disease: role of oxidized lipoproteins in macrophage foam cell formation and atherosclerosis. In: Fuchs, J., Podda, M., Packer, L. (eds.) Redox Genome Interactions in Health and Disease, pp. 557–590. Marcel Dekker, NY (2004)

    Google Scholar 

  31. Rosenblat, M., et al.: The catalytic histidine dyad of high density lipoprotein-associated serum paraoxonase-1 (PON1) is essential for PON1-mediated inhibition of low density lipoprotein oxidation and stimulation of macrophage cholesterol efflux. J. Biol. Chem. 281, 7657–7665 (2006)

    Article  CAS  Google Scholar 

  32. Bloodsworth, A., et al.: Manganese-porphyrin reactions with lipids and lipoproteins. Free Radical Biol. Med. 28, 1017–1029 (2000)

    Article  CAS  Google Scholar 

  33. Kumar, A., Goldberg, I., Botoshansky, M., Buchman, Y., Gross, Z.: Oxygen atom transfer reactions from isolated (Oxo)manganese(V) corroles to sulfides. J. Am. Chem. Soc. 132, 15233–15245 (2010)

    Article  CAS  Google Scholar 

  34. Agadjanian, H., et al.: Tumor detection and elimination by a targeted gallium corrole. Proc. Natl. Acad. Sci. U. S. A. 106, 6105–6110 (2009)

    Article  CAS  Google Scholar 

  35. Kasugai, N., et al.: Selective cell death by water-soluble Fe-porphyrins with superoxide dismutase (SOD) activity. J. Inorg. Biochem. 91, 349–355 (2002)

    Article  CAS  Google Scholar 

  36. Spasojevic, I., et al.: Pharmacokinetics of the potent redox-modulating manganese porphyrin, MnTE-2-PyP5+, in plasma and major organs of B6C3F1 mice. Free Radical Biol. Med. 45, 943–949 (2008)

    Article  CAS  Google Scholar 

  37. Mandoj, F., Nardis, S., Pomarico, G., Paolesse, R.: Demetalation of corrole complexes: an old dream turning into reality. J. Porphyrins Phthalocyanines 12, 19–26 (2008)

    Article  CAS  Google Scholar 

  38. Liu, X., et al.: Development of sensitive metalloporphyrin probes for chemiluminescent imaging detection of serum proteins. Electrophoresis 30, 3034–3040 (2009)

    Article  CAS  Google Scholar 

  39. Nakano, M., et al.: A highly sensitive method for determining both Mn- and Cu–Zn superoxide dismutase activities in tissues and blood cells. Anal. Biochem. 187, 277–280 (1990)

    Article  CAS  Google Scholar 

  40. Komatsu, H., Obata, F.: An optimized method for determination of intracellular glutathione in mouse macrophage cultures by fluorimetric high-performance liquid chromatography. Biomed. Chromatogr. 17, 345–350 (2003)

    Article  CAS  Google Scholar 

  41. Parker, C.W., Fischman, C.M., Wedner, H.J.: Relationship of biosynthesis of slow reacting substance to intracellular glutathione concentrations. Proc. Natl. Acad. Sci. U. S. A. 77, 6870–6873 (1980)

    Article  CAS  Google Scholar 

  42. Haber, A., Aviram, M., Gross, Z.: Protecting the beneficial functionality of lipoproteins by 1-Fe, a corrole-based catalytic antioxidant. Chem. Sci. 2, 295–302 (2011)

    Article  CAS  Google Scholar 

  43. Ball, D.J., et al.: A comparative study of the cellular uptake and photodynamic efficacy of three novel zinc phthalocyanines of differing charge. Photochem. Photobiol. 69, 390–396 (1999)

    Article  CAS  Google Scholar 

  44. Camejo, G., et al.: Hemin binding and oxidation of lipoproteins in serum: mechanisms and effect on the interaction of LDL with human macrophages. J. Lipid Res. 39, 755–766 (1998)

    CAS  Google Scholar 

  45. Gandini, S.C.M., Borissevitch, I.E., Perussi, J.R., Imasato, H., Tabak, M.: Aggregation of meso-tetrakis(4-N-methyl-pyridiniumyl) porphyrin in its free base, Fe(III) and Mn(III) forms due to the interaction with DNA in aqueous solutions: Optical absorption, fluorescence and light scattering studies. J. Lumin 78, 53–61 (1998)

    Article  CAS  Google Scholar 

  46. Sari, M.A., Battioni, J.P., Mansuy, D., Le Pecq, J.B.: Mode of interaction and apparent binding constants of meso-tetraaryl porphyrins bearing between one and four positive charges with DNA. Biochem. Biophys. Res. Commun. 141, 643–649 (1986)

    Article  CAS  Google Scholar 

  47. Jensen, M.P., Riley, D.P.: Peroxynitrite decomposition activity of iron porphyrin complexes. Inorg. Chem. 41, 4788–4797 (2002)

    Article  CAS  Google Scholar 

  48. Pasternack, R.F., Skowronek, W.R.: Catalysis of the disproportionation of superoxide by metalloporphyrins. J. Inorg. Biochem. 11, 261–267 (1979)

    Article  CAS  Google Scholar 

  49. Aviram, M., Fuhrman, B.: LDL oxidation by arterial wall macrophages depends on the oxidative status in the lipoprotein and in the cells: role of prooxidants vs. antioxidants. Mol. Cell. Biochem. 188, 149–159 (1998)

    Article  CAS  Google Scholar 

  50. Gieseg, S.P., et al.: Macrophage antioxidant protection within atherosclerotic plaques. Front Biosci. 14, 1230–1246 (2009)

    Article  CAS  Google Scholar 

  51. Szabó, C., Day, B.J., Salzman, A.L.: Evaluation of the relative contribution of nitric oxide and peroxynitrite to the suppression of mitochondrial respiration in immunostimulated macrophages using a manganese mesoporphyrin superoxide dismutase mimetic and peroxynitrite scavenger. FEBS Lett. 381, 82–86 (1996)

    Article  Google Scholar 

  52. Assreuy, J., et al.: Production of nitric oxide and superoxide by activated macrophages and killing of Leishmania major. Eur. J. Immunol. 24, 672–676 (1994)

    Article  CAS  Google Scholar 

  53. Eu, J.P., Liu, L., Zeng, M., Stamler, J.S.: An apoptotic model for nitrosative stress. Biochemistry (Mosc.) 39, 1040–1047 (2000)

    Article  CAS  Google Scholar 

  54. Pasternack, R.F., Halliwell, B.: Superoxide dismutase activities of an iron porphyrin and other iron complexes. J. Am. Chem. Soc. 101, 1026–1031 (1979)

    Article  CAS  Google Scholar 

  55. Batinić-Haberle, I., Rebouças, J.S., Spasojević, I.: Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid. Redox Signal. 13, 877–918 (2010)

    Article  Google Scholar 

  56. Schwalbe, M., Dogutan, D.K., Stoian, S.A., Teets, T.S., Nocera, D.G.: Xanthene-modified and hangman iron corroles. Inorg. Chem. 50, 1368–1377 (2011)

    Article  CAS  Google Scholar 

  57. Gardner, P.R., Nguyen, D.-D.H., White, C.W.: Superoxide scavenging by Mn(II/III) tetrakis (1-methyl-4-pyridyl) porphyrin in mammalian cells. Arch. Biochem. Biophys. 325, 20–28 (1996)

    Article  CAS  Google Scholar 

  58. Dwyer, B.E., Lu, S.-Y., Laitinen, J.T., Nishimura, R.N.: Protective properties of tin- and manganese-centered porphyrins against hydrogen peroxide-mediated injury in rat astroglial cells. J. Neurochem. 71, 2497–2504 (1998)

    Article  CAS  Google Scholar 

  59. Klassen, S., Rabkin, S.: The metalloporphyrin FeTPPS but not by cyclosporin A antagonizes the interaction of peroxynitrate and hydrogen peroxide on cardiomyocyte cell death. Naunyn-Schmiedeberg’s Arch. Pharmacol. 379, 149–161 (2009)

    Article  CAS  Google Scholar 

  60. Asayama, S., Kasugai, N., Kubota, S., Nagaoka, S., Kawakami, H.: Superoxide dismutase as a target enzyme for Fe-porphyrin-induced cell death. J. Inorg. Biochem. 101, 261–266 (2007)

    Article  CAS  Google Scholar 

  61. Jensen, M.P., Riley, D.P.: Peroxynitrite decomposition activity of iron porphyrin complexes. Inorg. Biochem. 41, 4788–4797 (2002)

    Article  CAS  Google Scholar 

  62. Lee, J., Hunt, J.A., Groves, J.T.: Manganese porphyrins as redox-coupled peroxynitrite reductases. J. Am. Chem. Soc. 120, 6053–6061 (1998)

    Article  CAS  Google Scholar 

  63. Salvemini, D., Wang, Z.-Q., Stern, M.K., Currie, M.G., Misko, T.P.: Peroxynitrite decomposition catalysts: therapeutics for peroxynitrite-mediated pathology. Proc. Natl. Acad. Sci. U. S. A. 95, 2659–2663 (1998)

    Article  CAS  Google Scholar 

  64. Choi, I.Y., et al.: Protection by a manganese porphyrin of endogenous peroxynitrite-induced death of glial cells via inhibition of mitochondrial transmembrane potential decrease. Glia 31, 155–164 (2000)

    Article  CAS  Google Scholar 

  65. Zingarelli, B., Day, B.J., Crapo, J.D., Salzman, A.L., Szabó, C.: The potential role of peroxynitrite in the vascular contractile and cellular energetic failure in endotoxic shock. Br. J. Pharmacol. 120, 259–267 (1997)

    Article  CAS  Google Scholar 

  66. Trackey, J.L., Uliasz, T.F., Hewett, S.J.: SIN-1-induced cytotoxicity in mixed cortical cell culture: peroxynitrite-dependent and -independent induction of excitotoxic cell death. J. Neurochem. 79, 445–455 (2001)

    Article  CAS  Google Scholar 

  67. Misko, T.P., et al.: Characterization of the cytoprotective action of peroxynitrite decomposition catalysts. J. Biol. Chem. 273, 15646–15653 (1998)

    Article  CAS  Google Scholar 

  68. Rosanoff, A., Seelig, M.S.: Comparison of mechanism and functional effects of magnesium and statin pharmaceuticals. J. Am. Coll. Nutr. 23, 501S–505S (2004)

    CAS  Google Scholar 

  69. Keidar, S., Aviram, M., Maor, I., Oiknine, J., Brook, J.G.: Pravastatin inhibits cellular cholesterol synthesis and increases low density lipoprotein receptor activity in macrophages: in vitro and in vivo studies. Br. J. Clin. Pharmacol. 38, 513–519 (1994)

    Article  CAS  Google Scholar 

  70. Fuhrman, B., Elis, A., Aviram, M.: Hypocholesterolemic effect of lycopene and [beta]-carotene is related to suppression of cholesterol synthesis and augmentation of LDL receptor activity in macrophages. Biochem. Biophys. Res. Comm. 233, 658–662 (1997)

    Article  CAS  Google Scholar 

  71. Fernandez, G., Spatz, E.S., Jablecki, C., Phillips, P.S.: Statin myopathy: a common dilemma not reflected in clinical trials. Cleve. Clin. J. Med. 78, 393–403 (2011)

    Article  Google Scholar 

  72. FDA Drug Safety Communication: New restrictions, contraindications, and dose limitations for Zocor (simvastatin) to reduce the risk of muscle injury. http://www.fda.gov/Drugs/DrugSafety/ucm256581.htm (2011)

  73. Preiss, D., et al.: Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy. J. Am. Med. Assoc. 305, 2556–2564 (2011)

    Article  CAS  Google Scholar 

  74. Waters, D.D., et al.: Predictors of new-onset diabetes in patients treated with atorvastatin: results from 3 large randomized clinical trials. J. Am. Coll. Cardiol. 57, 1535–1545 (2011)

    Article  CAS  Google Scholar 

  75. Cheung, M.C., Zhao, X.-Q., Chait, A., Albers, J.J., Brown, B.G.: Antioxidant supplements block the response of HDL to simvastatin-niacin therapy in patients with coronary artery disease and low HDL. Atertio. Thromb. Vasc. Biol. 21, 1320–1326 (2001)

    Article  CAS  Google Scholar 

  76. Tousoulis, D., et al.: Effects of combined administration of low dose atorvastatin and vitamin E on inflammatory markers and endothelial function in patients with heart failure. Eur. J. Heart Fail. 7, 1126–1132 (2005)

    Article  CAS  Google Scholar 

  77. Coleman, R., Hayek, T., Keidar, S., Aviram, M.: A mouse model for human atherosclerosis: Long-term histopathological study of lesion development in the aortic arch of apolipoprotein E-deficient (E0) mice. Acta Histochem. 108, 415–424 (2006)

    Article  CAS  Google Scholar 

  78. Haber, A., et al.: Amphiphilic/bipolar metallocorroles that catalyze the decomposition of reactive oxygen and nitrogen species, rescue lipoproteins from oxidative damage, and attenuate atherosclerosis in mice. Angew. Chem. Int. Ed. 47, 7896–7900 (2008)

    Google Scholar 

  79. Aviram, M., et al.: Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am. J. Clin. Nutr. 71, 1062–1076 (2000)

    CAS  Google Scholar 

  80. Kaplan, M., et al.: Pomegranate juice supplementation to atherosclerotic mice reduces macrophage lipid peroxidation, cellular cholesterol accumulation and development of atherosclerosis. J. Nutr. 131, 2082–2089 (2001)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adi Haber .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haber, A. (2012). Discussion. In: Metallocorroles for Attenuation of Atherosclerosis. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30328-9_4

Download citation

Publish with us

Policies and ethics