Advertisement

Comparing the Representativeness of the 1-norm Median for Likert and Free-response Fuzzy Scales

  • Sara de la Rosa de SáaEmail author
  • Stefan Van Aelst
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 285)

Abstract

Many questionnaires related to Social Sciences, Medical Diagnosis, Control Engineering, etc. are based on the well-known Likert scales. For its statistical data analysis each categorical response is usually encoded by an integer number. In this paper the convenience of allowing respondents to reply by using a free-response format based on the scale of fuzzy numbers is discussed by developing a comparative study through the mean 1-norm error on the representativeness of the corresponding median for the fuzzy and the integer-encoded Likert scales cases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, I.E., Seaman, C.A.: Likert scales and Data Analyses. Qual. Prog. 40, 64–65 (2007)Google Scholar
  2. 2.
    Bocklisch, F., Bocklisch, S.F., Krems, J.F.: How to Translate Words into Numbers? A Fuzzy Approach for the Numerical Translation of Verbal Probabilities. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. Lecture Notes in Computer Science (LNAI), vol. 6178, pp. 614–623. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Bocklisch, F.A.: The vagueness of verbal probability and frequency expressions. Int. J. Adv. Comp. Sci. 1(2), 52–57 (2011)Google Scholar
  4. 4.
    Diamond, P., Kloeden, P.: Metric spaces of fuzzy sets. Fuzzy Sets and Systems 100, 63–71 (1999)CrossRefGoogle Scholar
  5. 5.
    Hesketh, B., Griffin, B., Loh, V.: A future-oriented retirement transition adjustment framework. J. Vocat. Behav. 79, 303–314 (2011)CrossRefGoogle Scholar
  6. 6.
    Hesketh, B., Hesketh, T., Hansen, J.-I., Goranson, D.: Use of fuzzy variables in developing new scales from strong interest inventory. J. Couns. Psych. 42, 85–99 (1995)CrossRefGoogle Scholar
  7. 7.
    Hesketh, T., Hesketh, B.: Computerised fuzzy ratings: the concept of a fuzzy class. Behav. Res. Meth., Inst. & Comp. 26, 272–277 (1994)CrossRefGoogle Scholar
  8. 8.
    Hesketh, T., Pryor, R.G.L., Hesketh, B.: An application of a computerised fuzzy graphic rating scale to the psychological measurement of individual differences. Int. J. Man. Mach. Stud. 29, 21–35 (1988)zbMATHCrossRefGoogle Scholar
  9. 9.
    Hu, H.-Y., Lee, Y.-C., Yen, T.-M.: Service quality gaps analysis based on Fuzzy linguistic SERVQUAL with a case study in hospital out-patient services. The TQM J. 22, 499–515 (2010)CrossRefGoogle Scholar
  10. 10.
    Kambaki-Vougioukli, P., Vougiouklis, T.: Bar instead of scale. Ratio Sociol. 3, 49–56 (2008)Google Scholar
  11. 11.
    Lalla, M., Facchinetti, G., Mastroleo, G.: Ordinal scales and fuzzy set systems to measure agreement: an application to the evaluation of teaching activity. Qual. & Quant. 38, 577–601 (2004)CrossRefGoogle Scholar
  12. 12.
    Lalla, M., Facchinetti, G., Mastroleo, G.: Vagueness evaluation of the crisp output in a fuzzy inference system. Fuzzy Sets and Systems 159, 3297–3312 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Li, C.Q.: A new Likert scale based on Fuzzy Set Theory. PhD Thesis, Connecticut University, Connecticut, USA (2010)Google Scholar
  14. 14.
    Lozano, L.M., García-Cueto, E.: Effect of the number of response categories on the reliability and validity of rating scales. Methodology 4, 73–79 (2008)Google Scholar
  15. 15.
    Norman, G.: Likert scales, levels of measurement and the “laws” of statistics. Adv. in Health Sci. Educ. 15, 625–632 (2010)CrossRefGoogle Scholar
  16. 16.
    Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl. 114, 409–422 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Sinova, B., Gil, M.A., Colubi, A., Van Aelst, S.: The median of a random fuzzy number. The 1-norm distance approach. In: Fuzzy Sets and Systems (in press, 2012), doi:10.1016/j.fss.2011.11.004Google Scholar
  18. 18.
    Sinova, B., De la Rosa de Sáa, S., Gil, M.A.: A generalized L1-type metric between fuzzy numbers for an approach to central tendency of fuzzy data (submitted, 2012)Google Scholar
  19. 19.
    Trutschnig, W., Lubiano, M.A., Lastra, J.: SAFD — An R package for Statistical Analysis of Fuzzy Data. In: Borgelt, C., Gil, M.A., Sousa, J.M.C., Verleysen, M. (eds.) Towards Advanced Data Analysis by Combining Soft Computing and Statistics, pp. 107–118. Springer, Heidelberg (2012)Google Scholar
  20. 20.
    Turksen, I.B., Willson, I.A.: A fuzzy set preference model for consumer choice. Fuzzy Sets and Systems 68, 253–266 (1994)CrossRefGoogle Scholar
  21. 21.
    van Laerhoven, H., van der Zaag-Loonen, H.J., Derkx, B.H.F.: A comparison of Likert scale and visual analogue scales as response options in children’s questionnaires. Acta Pædiatr. 93, 830–835 (2004)CrossRefGoogle Scholar
  22. 22.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Part 1. Inform. Sci. 8, 199–249, Part 2. Inform. Sci. 8, 301–353, Part 3. Inform. Sci. 9, 43–80 (1975)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Departamento de Estadística e I.O. y D.M.Universidad de OviedoOviedoSpain
  2. 2.Department of Applied Mathematics and Computer ScienceGhent UniversityGentBelgium

Personalised recommendations