Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 405 Accesses

Abstract

A supramolecular platform based on self-assembled monolayers (SAMs) has been implemented in a microfluidic device. The system has been applied for the sensing of two different analyte types: biologically relevant phosphate anions and aromatic carboxylic acids which are important for anthrax detection. An Eu(III)-EDTA complex was bound to β-cyclodextrin monolayers via orthogonal supramolecular host–guest interactions. The self-assembly of the Eu(III)-EDTA conjugate and naphthalene β-diketone as an antenna resulted in the formation of a highly luminescent lanthanide complex on the microchannel surface. Detection of different phosphate anions and aromatic carboxylic acids was demonstrated by monitoring the decrease in red emission following displacement of the antenna by the analyte. Parallel fabrication of five sensing SAMs in a single multichannel chip was performed, as a first demonstration of phosphate and carboxylic acid screening in a high-throughput format that allows a general detection platform for both analyte systems in a single test run.

Part of this chapter has been published in Ref. [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Eker, M. Deniz Yilmaz, S. Schlautmann, J.G.E. Gardeniers, J. Huskens, Int. J. Mol. Sci. 12(11), 7335–7351 (2011)

    Article  CAS  Google Scholar 

  2. A.L. Jenkins, O.M. Uy, G.M. Murray, Anal. Chem. 71, 373–378 (1999)

    Article  CAS  Google Scholar 

  3. P.R. Puopolo, P. Chamberlin, J.G. Flood, Clin. Chem. 38, 1838–1842 (1992)

    CAS  Google Scholar 

  4. W.H. van der Schalie, T.R. Shedd, M.W. Widder, L.M. Brennan, J. Appl. Toxicol. 24, 387–394 (2004)

    Article  Google Scholar 

  5. M.F. Rega, J.C. Reed, M. Pellecchia, Bioorg. Chem. 35, 113–120 (2007)

    Article  CAS  Google Scholar 

  6. P.J. Hajduk, T. Gerfin, J.M. Boehlen, M. Haberli, D. Marek, S.W. Fesik, J. Med. Chem. 42, 2315–2317 (1999)

    Article  CAS  Google Scholar 

  7. M.A. Huestis, M.L. Smith, Drug Discov. Today 3, 49–57 (2006)

    Article  Google Scholar 

  8. E. Fu, T. Chinowsky, K. Nelson, K. Johnston, T. Edwards, K. Helton, M. Grow, J.W. Miller, P. Yager, Ann. N. Y. Acad. Sci. 2007, 335–344 (1098)

    Google Scholar 

  9. A.M. Smith, S. Dave, S. Nie, L. True, X. Gao, Expert Rev. Mol. Diagn. 6, 232–244 (2006)

    Article  Google Scholar 

  10. P. Haas, P. Then, A. Wild, W. Grange, S. Zorman, M. Hegner, M. Calame, U. Aebi, J. Flammer, B. Hecht, Anal. Chem. 82, 6299–6302 (2010)

    Article  CAS  Google Scholar 

  11. E. Lester, A. Ponce, IEEE Eng. Med. Biol. 21, 38–42 (2002)

    Google Scholar 

  12. E. D. Lester, G. Bearman, A. Ponce, IEEE Eng. Med. Biol. 23, 130–135 (2004)

    Google Scholar 

  13. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd edn. (Kluwer Academic and Plenum Publishers, New York, 1999)

    Google Scholar 

  14. R. Narayanaswamy, O.S. Wolfbeis (eds.), Optical Sensors: Industrial, Environmental and Diagnostic Applications, vol. 1 (Springer Series on Chemical Sensors and Biosensors, Berlin, 2004)

    Google Scholar 

  15. R. Martinez-Manez, F. Sancenon, J. Fluoresc. 15, 267–285 (2005)

    Article  CAS  Google Scholar 

  16. R. Martinez-Manez, F. Sancenon, Chem. Rev. 103, 4419–4476 (2003)

    Article  CAS  Google Scholar 

  17. K. Niikura, A. Metzger, E.V. Anslyn, J. Am. Chem. Soc. 120, 8533–8534 (1998)

    Article  CAS  Google Scholar 

  18. A. Metzger, E.V. Anslyn, Angew. Chem. Int. Ed. 37, 649–652 (1998)

    Article  CAS  Google Scholar 

  19. N.S. Murray, S.P. Jarvis, T. Gunnlaugsson, Chem. Commun. 33, 4959–4961 (2009)

    Article  Google Scholar 

  20. J. Massue, S.J. Quinn, T. Gunnlaugsson, J. Am. Chem. Soc. 130, 6900–6901 (2008)

    Article  CAS  Google Scholar 

  21. M.L. Cable, J.P. Kirby, K. Sorasaenee, H.B. Gray, A. Ponce, J. Am. Chem. Soc. 129, 1474–1475 (2007)

    Article  CAS  Google Scholar 

  22. K. Ai, B. Zhang, L. Lu, Angew. Chem. Int. Ed. 48, 304–308 (2009)

    Article  CAS  Google Scholar 

  23. M.D. Yilmaz, S. Hsu, D.N. Reinhoudt, A.H. Velders, J. Huskens, Angew. Chem. Int. Ed. 49, 5938–5941 (2010)

    CAS  Google Scholar 

  24. J.P. Leonard, C.B. Nolan, F. Stomeo, T. Gunnlaugsson, Top. Curr. Chem. 281, 1 (2007)

    Article  CAS  Google Scholar 

  25. J.P. Leonard, P. Jensen, T. McCabe, J.E. O’Brien, R.D. Peacock, P.E. Kruger, T. Gunnlaugsson, J. Am. Chem. Soc. 129, 10986 (2007)

    Article  CAS  Google Scholar 

  26. T. Gunnlaugsson, F. Stomeo, Org. Biomol. Chem. 2007, 5 (1999)

    Google Scholar 

  27. K. Binnemans, Chem. Rev. 109, 4283–4374 (2009)

    Article  CAS  Google Scholar 

  28. R.M. Crooks, A.J. Ricco, Acc. Chem. Res. 31, 219–227 (1998)

    Article  CAS  Google Scholar 

  29. A.E. Kaifer, Israel J. Chem. 36, 389–397 (1996)

    CAS  Google Scholar 

  30. R. Zimmerman, L. Basabe-Desmonts, F. van der Baan, D.N. Reinhoudt, M. Crego-Calama, J. Mater. Chem. 15, 2772–2777 (2005)

    Article  CAS  Google Scholar 

  31. Y.R. Kim, J.J. Kim, J.S. Kim, H. Kim, Adv. Mater. 20, 4428–4432 (2008)

    Article  CAS  Google Scholar 

  32. S. Flink, F.C.J.M. van Veggel, D.N. Reinhoudt, Adv. Mater. 12, 1315–1328 (2000)

    Article  CAS  Google Scholar 

  33. N.J. van der Veen, S. Flink, M.A. Deij, R.J.M. Egberink, F.C.J.M. van Veggel, D.N. Reinhoudt, J. Am. Chem. Soc. 122, 6112–6113 (2000)

    Article  Google Scholar 

  34. M. Crego-Calama, D.N. Reinhoudt, Adv. Mater. 13, 1171–1174 (2001)

    Article  CAS  Google Scholar 

  35. L. Basabe-Desmonts, J. Beld, R.S. Zimmerman, J. Hernando, P. Mela, M.F. Garcia Parajo, N.F. Van Hulst, A. van den Berg, D.N. Reinhoudt, M. Crego-Calama, J. Am. Chem. Soc. 126, 7293–7299 (2004)

    Article  CAS  Google Scholar 

  36. C.M. Rudzinski, A.M. Young, D.G. Nocera, J. Am. Chem. Soc. 124, 1723–1727 (2002)

    Article  CAS  Google Scholar 

  37. J.M. Berg, J.L. Tymoczko, L. Stryer, Biochemistry, 5th edn. (W.H. Freeman, New York, 2002)

    Google Scholar 

  38. A. Ojida, I. Takashima, T. Kohira, H. Nonaka, I. Hamachi, J. Am. Chem. Soc. 130, 12095–12101 (2008)

    Article  CAS  Google Scholar 

  39. P.D. Beer, P.A. Gale, Angew. Chem. Int. Ed. 40, 486 (2001)

    Article  CAS  Google Scholar 

  40. Q. Li, P.K. Dasgupta, H. Temkin, Environ. Sci. Technol. 42, 2799–2804 (2008)

    Article  CAS  Google Scholar 

  41. D.A. Henderson, Science 283, 1279–1282 (1999)

    Article  CAS  Google Scholar 

  42. M. Enserink, Science 294, 1266–1267 (2001)

    Article  CAS  Google Scholar 

  43. P.T. Yung, E.D. Lester, G. Bearman, A. Ponce, Biotechnol. Bioeng. 98, 864–871 (2007)

    Article  CAS  Google Scholar 

  44. G.F. Bailey, S. Karp, L.E. Sacks, J. Bacteriol. 89, 984 (1965)

    CAS  Google Scholar 

  45. D.R. Walt, Anal. Chem. 72, 738a–746a (2000)

    Article  CAS  Google Scholar 

  46. L.J. Rode, J.W. Foster, Nature 188, 1132–1134 (1960)

    Article  CAS  Google Scholar 

  47. D.L. Rosen, Rev. Anal. Chem. 18, 1–21 (1999)

    Article  CAS  Google Scholar 

  48. P. Mela, S. Onclin, M.H. Goedbloed, S. Levi, M.F. Garcia-Parajo, N.F. van Hulst, B.J. Ravoo, D.N. Reinhoudt, A. van den Berg, Lab Chip 5, 163–170 (2005)

    Article  CAS  Google Scholar 

  49. T. Vilkner, D. Janasek, A. Manz, Anal. Chem. 7612, 3373–3385 (2004)

    Article  Google Scholar 

  50. H. Andersson, A. Van den Berg, Sens. Actuators B 92, 315–325 (2003)

    Article  Google Scholar 

  51. H.Y. Fan, F.Y. Lu, A. Stump, S.T. Reed, T. Baer, R. Schunk, V. Perez-Luna, G.P. Lopez, C.J. Brinker, Nature 405, 56–60 (2000)

    Article  CAS  Google Scholar 

  52. A. Mulder, J. Huskens, D.N. Reinhoudt, Org. Biomol. Chem. 2, 3409 (2004)

    Article  CAS  Google Scholar 

  53. M.J.W. Ludden, D.N. Reinhoudt, J. Huskens, Chem. Soc. Rev. 35, 1122–1134 (2006)

    Article  CAS  Google Scholar 

  54. A. Metzger, V.M. Lynch, E.V. Anslyn, Angew. Chem. Int. Ed. 36, 862–865 (1997)

    Article  CAS  Google Scholar 

  55. M.J. Berridge, Nature 361, 315 (1993)

    Article  CAS  Google Scholar 

  56. N. Shao, J. Jin, G. Wang, Y. Zhang, R. Yang, J. Yuan, Chem. Commun. 1127–1129 (2008)

    Google Scholar 

  57. L.J. Charbonniere, R. Schurhammer, S. Mameri, G. Wipff, R.F. Ziessel, Inorg. Chem. 44, 7151–7160 (2005)

    Article  CAS  Google Scholar 

  58. S.M. Shanbhag, G.R. Choppin, Inorg. Chim. Acta 139, 119–120 (1987)

    Article  CAS  Google Scholar 

  59. Y. Kanekiyo, R. Naganawa, H. Tao, Chem. Commun. 1006–1007 (2004)

    Google Scholar 

  60. C. Bazzicalupi, S. Biagini, A. Bencini, E. Faggi, C. Giorgi, I. Matera, B. Valtancoli, Chem. Commun. 4087–4089 (2006)

    Google Scholar 

  61. G.V. Zyryanov, M.A. Palacios, P. Anzenbacher Jr, Angew. Chem. Int. Ed. 46, 7849–7852 (2007)

    Article  CAS  Google Scholar 

  62. J.P. Kirby, M.L. Cable, D.J. Levine, H.B. Gray, A. Ponce, Anal. Chem. 80, 5750–5754 (2008)

    Article  CAS  Google Scholar 

  63. S.L. Wu, W.D. Horrocks Jr, Anal. Chem. 68, 394–401 (1996)

    Article  CAS  Google Scholar 

  64. P.R. Ashton, R. Königer, J.F. Stoddart, D. Alker, V.D. Harding, J. Org. Chem. 61, 903–908 (1996)

    Article  CAS  Google Scholar 

  65. S.H. Hsu, M.D. Yilmaz, C. Blum, V. Subramaniam, D.N. Reinhoudt, A.H. Velders, J. Huskens, J. Am. Chem. Soc. 131, 12567–12569 (2009)

    Article  CAS  Google Scholar 

  66. J. Yuan, K. Matsumoto, Anal. Sci. 12, 31–36 (1996)

    Article  CAS  Google Scholar 

  67. J.G.E Gardeniers, R.E. Oosterbroek, A. van den Berg, in Lab-on-a-chip: Miniaturized systems for (bio)chemical analysis and synthesis (Elsevier, Amsterdam, 2003), pp. 37–64

    Google Scholar 

  68. H. Wensink, M.C. Elwenspoek, Wear 253, 1035–1043 (2002)

    Article  CAS  Google Scholar 

  69. M.J.W. Ludden, X.Y. Ling, T. Gang, W.P. Bula, H.J.G.E. Gardeniers, D.N. Reinhoudt, J. Huskens, Chem. Eur. J. 14, 136–142 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The major part of the work presented in this chapter was performed in collaboration with Dr. Bilge Eker in the Mesoscale Chemical Systems group of the University of Twente.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmut Deniz Yilmaz .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yilmaz, M.D. (2012). A Supramolecular Sensing Platform in a Microfluidic Chip. In: Orthogonal Supramolecular Interaction Motifs for Functional Monolayer Architectures. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30257-2_5

Download citation

Publish with us

Policies and ethics