Skip to main content

The Dynamic Magnonic Crystal: New Horizons in Artificial Crystal Based Signal Processing

  • Chapter
  • First Online:
Magnonics

Part of the book series: Topics in Applied Physics ((TAP,volume 125))

Abstract

In this chapter, we describe the development and properties of the first experimental dynamic magnonic crystal devices and highlight certain aspects of the intriguing new physics that they have to offer us. We discuss the significance of the dynamic magnonic crystal both in the context of the furtherance and technological application of magnonics, and in the understanding of general wave dynamics in metamaterial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For an accessible and enlightening introduction to anisotropic spin-wave dispersion, see [1618].

  2. 2.

    Approximately two orders of magnitude lower than all other practical experimental materials.

  3. 3.

    Note that backward volume magnetostatic spin waves (BVMSWs) are called so because their dispersion relation ω(k) has a negative slope, implying that the group and phase velocities of the waves are in opposite directions. We stress, however, that none of the results we describe later in this chapter hinge on this unusual physics; all may be generalized to any waves having a symmetric dispersion function ω(k)=ω(−k) propagating in a dynamic artificial crystal structure.

References

  1. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305, 788 (2004)

    Article  Google Scholar 

  2. W.L. Bragg, Proc. Camb. Philol. Soc. 17, 43 (1912)

    Google Scholar 

  3. J.D. Joannopoulos, P.R. Villeneuve, F. Fan, Nature 386, 143 (1997)

    Article  Google Scholar 

  4. J. Bravo-Abad, M. Soljacĉić, Nature 6, 799 (2007)

    Article  Google Scholar 

  5. J.O. Vasseur, P.A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, D. Prevost, Phys. Rev. Lett. 86, 3012 (2001)

    Article  Google Scholar 

  6. T. Miyashita, Meas. Sci. Technol. 16, R47 (2005)

    Article  Google Scholar 

  7. Y. Sivan, J.B. Pendry, Opt. Express 19, 14502 (2011)

    Article  Google Scholar 

  8. S.A. Nikitov, P. Tailhades, C.S. Tsai, J. Magn. Magn. Mater. 236, 320 (2001)

    Article  Google Scholar 

  9. Y.V. Gulyaev, S.A. Nikitov, L.V. Zhivotovskii, A.A. Klimov, P. Tailhades, L. Presmanes, C. Bonningue, C.S. Tsai, S.L. Vysotskii, Y.A. Filimonov, JETP Lett. 77, 567 (2003)

    Article  Google Scholar 

  10. G. Gubbiotti, S. Tacchi, M. Madami, G. Carlotti, A.O. Adeyeye, M.P. Kostylev, J. Phys. D 43, 264003 (2010)

    Article  Google Scholar 

  11. S. Neusser, G. Duerr, H.G. Bauer, S. Tacchi, M. Madami, G. Woltersdorf, G. Gubbiotti, C.H. Back, D. Grundler, Phys. Rev. Lett. 105, 067208 (2010)

    Article  Google Scholar 

  12. B. Lenk, H. Ulrichs, F. Garbs, M. Muenzenberg, Phys. Rep. 507, 107 (2011)

    Article  Google Scholar 

  13. C.-L. Hu, R. Magaraggia, H.-Y. Yuan, C.S. Chang, M. Kostylev, D. Tripathy, A.O. Adeyeye, R.L. Stamps, Appl. Phys. Lett. 98, 262508 (2011)

    Article  Google Scholar 

  14. M. Krawczyk, H. Puszkarski, Phys. Rev. B 77, 054437 (2008)

    Article  Google Scholar 

  15. M. Krawczyk, J. Klos, M.L. Sokolovskyy, S. Mamica, J. Appl. Phys. 108, 093909 (2010)

    Article  Google Scholar 

  16. A.G. Gurevich, G.A. Melkov, Magnetization Oscillations and Waves (CRC, New York, 1996)

    Google Scholar 

  17. A.A. Serga, A.V. Chumak, B. Hillebrands, J. Phys. D, Appl. Phys. 43, 264002 (2010)

    Article  Google Scholar 

  18. T. Schneider, A.A. Serga, A.V. Chumak, C.W. Sandweg, S. Trudel, S. Wolff, M.P. Kostylev, V.S. Tiberkevich, A.N. Slavin, B. Hillebrands, Phys. Rev. Lett. 104, 197203 (2010)

    Article  Google Scholar 

  19. K.W. Reed, J.M. Owens, R.L. Carter, Circuits Syst. Signal Process. 4, 157 (1985)

    Article  Google Scholar 

  20. P.A. Kolodin, B. Hillebrands, J. Magn. Magn. Mater. 161, 199 (1996)

    Article  Google Scholar 

  21. C. Mathieu, J. Jorzick, A. Frank, S.O. Demokritov, A.N. Slavin, B. Hillebrands, B. Bartenlian, C. Chappert, D. Decanini, F. Rousseaux, E. Cambril, Phys. Rev. Lett. 81, 3968 (1998)

    Article  Google Scholar 

  22. V.V. Kruglyak, A.N. Kuchko, J. Magn. Magn. Mater. 272, 302 (2004)

    Article  Google Scholar 

  23. M.P. Kostylev, A.A. Stashkevich, N.A. Sergeeva, Phys. Rev. B 69, 064408 (2004)

    Article  Google Scholar 

  24. G. Gubbiotti, S. Tacchi, G. Carlotti, N. Singh, S. Goolaup, A.O. Adeyeye, M. Kostylev, Appl. Phys. Lett. 90, 092503 (2007)

    Article  Google Scholar 

  25. A.V. Chumak, A.A. Serga, B. Hillebrands, M.P. Kostylev, Appl. Phys. Lett. 93, 022508 (2008)

    Article  Google Scholar 

  26. M.E. Dokukin, K. Togo, M. Inoue, J. Magn. Soc. Japan 32, 103 (2008)

    Article  Google Scholar 

  27. M. Kostylev, P. Schrader, R.L. Stamps, G. Gubbiotti, G. Carlotti, A.O. Adeyeye, S. Goolaup, N. Singh, Appl. Phys. Lett. 92, 132504 (2008)

    Article  Google Scholar 

  28. A.V. Chumak, A.A. Serga, S. Wolff, B. Hillebrands, M.P. Kostylev, Appl. Phys. Lett. 94, 172511 (2009)

    Article  Google Scholar 

  29. K.S. Lee, D.S. Han, S.K. Kim, Phys. Rev. Lett. 102, 127202 (2009)

    Article  Google Scholar 

  30. A.V. Chumak, P. Pirro, A.A. Serga, M.P. Kostylev, R.L. Stamps, H. Schultheiss, K. Vogt, S.J. Hermsdoerfer, B. Laegel, P.A. Beck, B. Hillebrands, Appl. Phys. Lett. 95, 262508 (2009)

    Article  Google Scholar 

  31. Z.K. Wang, V.L. Zhang, H.S. Lim, S.C. Ng, M.H. Kuok, S. Jain, A.O. Adeyeye, Appl. Phys. Lett. 94, 083112 (2009)

    Article  Google Scholar 

  32. A.V. Chumak, A.A. Serga, S. Wolff, B. Hillebrands, M.P. Kostylev, J. Appl. Phys. 105, 083906 (2009)

    Article  Google Scholar 

  33. A.D. Karenowska, A.V. Chumak, A.A. Serga, J.F. Gregg, B. Hillebrands, Appl. Phys. Lett. 96, 082505 (2010)

    Article  Google Scholar 

  34. V.S. Tkachenko, V.V. Kruglyak, A.N. Kuchko, Phys. Rev. B 81, 024425 (2010)

    Article  Google Scholar 

  35. F.S. Ma, H.S. Lim, Z.K. Wang, S.N. Piramanayagam, S.C. Ng, M.H. Kuok, Appl. Phys. Lett. 98, 153107 (2011)

    Article  Google Scholar 

  36. J. Ding, S. Jain, A.O. Adeyeye, J. Appl. Phys. 109, 07D301 (2011)

    Google Scholar 

  37. H. Al-Wahsha, A. Akjouj, B. Djafari-Rouhani, L. Dobrzynski, Surf. Sci. Rep. 66, 29 (2011)

    Article  Google Scholar 

  38. A.N. Myasoedov, Y.K. Fetisov, Sov. Phys. Tech. Phys. 34, 666 (1989)

    Google Scholar 

  39. Y.K. Fetisov, N.V. Ostrovskaya, A.F. Popkov, J. Appl. Phys. 79, 5730 (1996)

    Article  Google Scholar 

  40. Y.K. Fetisov, J. Commun. Technol. Electron. 10, 1171 (2004)

    Google Scholar 

  41. A.V. Chumak, T. Neumann, A.A. Serga, B. Hillebrands, M.P. Kostylev, J. Phys. D 42, 205005 (2009)

    Article  Google Scholar 

  42. A.V. Chumak, V.S. Tiberkevich, A.D. Karenowska, A.A. Serga, J.F. Gregg, A.N. Slavin, B. Hillebrands, Nat. Commun. 1, 141 (2010)

    Article  Google Scholar 

  43. A.D. Karenowska, V.S. Tiberkevich, A.V. Chumak, A.A. Serga, J.F. Gregg, A.N. Slavin, B. Hillebrands, Phys. Rev. Lett. 108, 015505 (2012)

    Article  Google Scholar 

  44. A.V. Chumak, P. Dhagat, A. Jander, A.A. Serga, B. Hillebrands, Phys. Rev. B 81, 140404 (2010)

    Article  Google Scholar 

  45. N.-N. Chen, A.N. Slavin, M.G. Cottam, IEEE Trans. Magn. 28, 3306 (1992)

    Article  Google Scholar 

  46. N.-N. Chen, A.N. Slavin, M.G. Cottam, Phys. Rev. B 47, 8667 (1993)

    Article  Google Scholar 

  47. A.B. Ustinov, N.Y. Grigor’eva, B.A. Kalinikos, JETP Lett. 88, 31 (2008)

    Article  Google Scholar 

  48. A.B. Ustinov, B.A. Kalinikos, V.E. Demidov, S.O. Demokritov, Phys. Rev. B 81, 180406 (2010)

    Article  Google Scholar 

  49. Y.B. Zeldovich, N.F. Pilipetsky, V.V. Shkunov, Principles of Phase Conjugation (Springer, New York, 1985)

    Book  Google Scholar 

  50. A. Korpel, M. Chatterjee, Proc. IEEE 69, 1539 (1981)

    Article  Google Scholar 

  51. M.F. Yanik, S. Fan, Phys. Rev. Lett. 93, 173903 (2004)

    Article  Google Scholar 

  52. G.A. Melkov, A.A. Serga, V.S. Tiberkevich, A.N. Oliynyk, A.N. Slavin, Phys. Rev. Lett. 84, 3438 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft (Grant No. SE 1771/1-2). Dynamic magnonic crystals were fabricated with the technical assistance of the Nano-Structuring Center, TU Kaiserslautern. A.D.K. is grateful for the support of Magdalen College, Oxford.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander A. Serga or Burkard Hillebrands .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chumak, A.V., Karenowska, A.D., Serga, A.A., Hillebrands, B. (2013). The Dynamic Magnonic Crystal: New Horizons in Artificial Crystal Based Signal Processing. In: Demokritov, S., Slavin, A. (eds) Magnonics. Topics in Applied Physics, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30247-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30247-3_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30246-6

  • Online ISBN: 978-3-642-30247-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics