An Efficient Algorithm to Compute Subsets of Points in ℤn

  • Ana Pacheco
  • Pedro Real
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7309)


In this paper we show a more efficient algorithm than that in [8] to compute subsets of points non-congruent by isometries. This algorithm can be used to reconstruct the object from the digital image. Both algorithms are compared, highlighting the improvements obtained in terms of CPU time.


digital image grid hypercube isometry n–xel 


  1. 1.
    Arias-Fisteus, J., Fernández-García, N., Sánchez-Fernández, L., Delgado-Kloos, C.: Hashing and canonicalizing Notation 3 graphs. Journal of Computer and System Sciences 76(7), 663–685 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Banks, D.C., Linton, S.A., Stockmeyer, P.K.: Counting Cases in Substitope Algorithms. IEEE Transactions on Visualization and Computer Graphics 10(4), 371–384 (2004)CrossRefGoogle Scholar
  3. 3.
    Dörksen-Reiter, H.: Shape representations of digital sets based on convexity properties. Dissertation, Universität Hamburg (2005)Google Scholar
  4. 4.
    Gross, J.L., Yellen, J.: Handbook of Graph Theory. CRC Press, Boca Raton (2003)CrossRefGoogle Scholar
  5. 5.
    Han, S.E.: A generalized digital (k 0,k 1)-homeomorphism. Note di Matematica 22(2), 157–166 (2003)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Kong, T.Y., Roscoe, A.W.: A theory of binary digital pictures. Computer Vision, Graphics, and Image Processing 32(2), 221–243 (1985)zbMATHCrossRefGoogle Scholar
  7. 7.
    Kong, T.Y., Roscoe, A.W.: Continuous Analogs of Axiomatized Digital Surfaces. Computer Vision, Graphics, and Image Processing 29(1), 60–86 (1985)zbMATHCrossRefGoogle Scholar
  8. 8.
    Pacheco, A., Mari, J.-L., Real, P.: Obtaining cell complexes associated to four dimensional digital objects. Imagen-a 1(2), 57–64 (2010)Google Scholar
  9. 9.
    Pólya, G.: Sur Les Types Des Propositions Composées. The Journal of Symbolic Logic 5(3), 98–103 (1940)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Rodrigues Costa, S., et al.: The Symmetry Group of \(\mathbb{Z}{_q}^{n}\) in the Lee Space and the \(\mathbb{Z}{_q}^n\)-Linear Codes. In: Mattson, H.F., Mora, T. (eds.) AAECC 1997. LNCS, vol. 1255, pp. 66–77. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  11. 11.
    Rosenfeld, A.: Connectivity in Digital Pictures. Journal of The ACM - JACM 17(1), 146–160 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Rosenfeld, A.: Three-dimensional digital topology. Information and Control 50(2), 119–127 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Ziegler, G.M.: Lectures on 0/1-polytopes. Oberwolfach Seminars 29, 1–41 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ana Pacheco
    • 1
  • Pedro Real
    • 1
  1. 1.Dpto. Matemática Aplicada I, ETS Ingeniería InformáticaUniversidad de SevillaSpain

Personalised recommendations