Advertisement

Enhancing the Reconstruction from Non-uniform Point Sets Using Persistence Information

  • Erald Vuçini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7309)

Abstract

In this paper we propose an efficient method for selecting the reconstruction resolution of non-uniform representations. We analyze the topological difference between reconstructions based on Topological Persistence information and define a distance for quantifying such information. We compute the Persistence information with a state-of-the-art method and report in detail the characteristics of the proposed algorithm. We evaluate our method in different scenarios and compare to previous contributions. Our proposed method offers faster and more reliable results in an effort to improve the reconstruction process and to reduce the necessity for visual inspection.

Keywords

Reconstruction Topology Persistence Bottleneck Distance 

References

  1. 1.
    Aldroubi, A., Gröchenig, K.: Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces. Journal of Fourier Analysis and Applications 6, 93–103 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Arigovindan, M., Sühling, M., Hunziker, P.R., Unser, M.: Variational image reconstruction from arbitrarily spaced samples: A fast multiresolution spline solution. Proceedings of IEEE Transactions on Image Processing 14, 450–460 (2005)CrossRefGoogle Scholar
  3. 3.
    Bajaj, C.L., Pascucci, V., Schikore, D.: The contour spectrum. In: Proceedings of IEEE Visualization, pp. 167–174 (1997)Google Scholar
  4. 4.
    Bendich, P., Edelsbrunner, H., Kerber, M.: Computing robustness and persistence for images. In: Proceedings of IEEE Visualization, pp. 1251–1260 (2010)Google Scholar
  5. 5.
    Bremer, P.-T., Weber, G.H., Pascucci, V., Day, M., Bell, J.B.: Analyzing and tracking burning structures in lean premixed hydrogen flames. IEEE Trans. Vis. Comput. Graph. 16(2), 248–260 (2010)CrossRefGoogle Scholar
  6. 6.
    Carr, H., Snoeyink, J., van de Panne, M.: Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree. Computational Geometry 43(1), 42–58 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cerri, A., Biasotti, S., Giorgi, D.: k-dimensional size functions for shape description and comparison. In: International Conference on Image Analysis and Processing, pp. 795–800 (2007)Google Scholar
  8. 8.
    Chazal, F., Cohen-Steiner, D., Guibas, L.J., Mémoli, F., Oudot, S.: Gromov-hausdorff stable signatures for shapes using persistence. Comput. Graph. Forum 28(5), 1393–1403 (2009)CrossRefGoogle Scholar
  9. 9.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete and Computational Geometry 37(1), 103–120 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Edelsbrunner, H., Harer, J.: Computational topology, an introduction. American Mathematical Society (2010)Google Scholar
  11. 11.
    Feichtinger, H.G., Gröchenig, K., Strohmer, T.: Efficient numerical methods in non-uniform sampling theory. Numerische Mathematik 69, 423–440 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gyulassy, A., Natarajan, V., Pascucci, V., Bremer, P.-T., Hamann, B.: Topology-based simplification for feature extraction from 3D scalar fields. In: Proceedings of IEEE Visualization, pp. 535–542 (2005)Google Scholar
  13. 13.
    Jang, Y., Botchen, R.P., Lauser, A., Ebert, D.S., Gaither, K.P., Ertl, T.: Enhancing the interactive visualization of procedurally encoded multifield data with ellipsoidal basis functions. Computer and Graphics Forum 25(3), 587–596 (2006)CrossRefGoogle Scholar
  14. 14.
    Ohtake, Y., Belyaev, A.G., Seidel, H.-P.: 3D scattered data approximation with adaptive compactly supported radial basis functions. In: Proceedings of International Conference on Shape Modeling and Applications, pp. 31–39 (2004)Google Scholar
  15. 15.
    Stelldinger, P., Latecki, L.J., Siqueira, M.: Topological equivalence between a 3d object and the reconstruction of its digital image. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 126–140 (2007)CrossRefGoogle Scholar
  16. 16.
    Thévenaz, P., Blu, T., Unser, M.: Interpolation revisited. IEEE Transactions on Medical Imaging 19(7), 739–758 (2000)CrossRefGoogle Scholar
  17. 17.
    Vuçini, E., Kropatsch, W.G.: On the search of optimal reconstruction resolution, Pattern Recognition Letters (2011) (in press)Google Scholar
  18. 18.
    Vuçini, E., Möller, T., Eduard Gröller, M.: On visualization and reconstruction from non-uniform point sets using b-splines. In: Proceedings of Eurographics/ IEEE-VGTC Symposium on Visualization, vol. 28, pp. 1007–1014 (2009)Google Scholar
  19. 19.
    Vucini, E.: On visualization and reconstruction from non-uniform point sets, Ph.D. thesis, Vienna University of Technology (2009)Google Scholar
  20. 20.
    Wagner, H., Chen, C., Vuçini, E.: Efficient computation of persistent homology for cubical data. In: Proceedings of TopoInVis 2011. Mathematics and Visualization. Springer (2012)Google Scholar
  21. 21.
    Weber, G.H., Bremer, P.-T., Day, M.S., Bell, J.B., Pascucci, V.: Feature tracking using reeb graphs. In: Proceedings of Topology-based Methods in Visualization (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Erald Vuçini
    • 1
  1. 1.VRVis Center for Virtual Reality and Visualization ResearchAustria

Personalised recommendations