Persistence Modules, Shape Description, and Completeness

  • Francesca Cagliari
  • Massimo Ferri
  • Luciano Gualandri
  • Claudia Landi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7309)


Persistence modules are algebraic constructs that can be used to describe the shape of an object starting from a geometric representation of it. As shape descriptors, persistence modules are not complete, that is they may not distinguish non-equivalent shapes. In this paper we show that one reason for this is that homomorphisms between persistence modules forget the geometric nature of the problem. Therefore we introduce geometric homomorphisms between persistence modules, and show that in some cases they perform better. A combinatorial structure, the H 0-tree, is shown to be an invariant for geometric isomorphism classes in the case of persistence modules obtained through the 0th persistent homology functor.


geometric homomorphism rank invariant H0-tree 


  1. 1.
    Cagliari, F., Ferri, M., Pozzi, P.: Size functions from the categorical viewpoint. Acta Appl. Math. 67, 225–235 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discrete Comput. Geom. 42(1), 71–93 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Cerri, A., Di Fabio, B.: On certain optimal diffeomorphisms between closed curves. Forum Mathematicum (accepted for publication)Google Scholar
  4. 4.
    Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L.J., Oudot, S.Y.: Proximity of persistence modules and their diagrams. In: Proc. SCG 2009, pp. 237–246 (2009)Google Scholar
  5. 5.
    Collins, A., Zomorodian, A., Carlsson, G., Guibas, L.: A barcode shape descriptor for curve point cloud data. Computers and Graphics 28, 881–894 (2004)CrossRefGoogle Scholar
  6. 6.
    d’Amico, M., Frosini, P., Landi, C.: Natural pseudo-distance and optimal matching between reduced size functions. Acta Appl. Math. 109, 527–554 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Dibos, F., Frosini, P., Pasquignon, D.: The use of size functions for comparison of shapes through differential invariants. J. Math. Imag. Vis. 21, 107–118 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Donatini, P., Frosini, P.: Natural pseudodistances between closed manifolds. Forum Math. 16(5), 695–715 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society (2009)Google Scholar
  10. 10.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Frosini, P., Landi, C.: Uniqueness of models in persistent homology: the case of curves. Inverse Problems 27, 124005 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Frosini, P., Landi, C.: Size theory as a topological tool for computer vision. Patt. Recog. Image Anal. 9, 596–603 (1999)Google Scholar
  13. 13.
    Hatcher, A.: Algebraic topology. Cambridge University Press (2002)Google Scholar
  14. 14.
    van Kreveld, M., van Oostrum, R., Bajaj, C., Pascucci, V., Schikore, D.: Contour trees and small seed sets for isosurface traversal. In: Proc. 13th Annu. ACM Sympos. Comput. Geom., pp. 212–220 (1997)Google Scholar
  15. 15.
    Lesnick, M.: The optimality of the interleaving distance on multidimensional persistence modules (2011),
  16. 16.
    Molina-Abril, H., Real, P.: Homological Computation Using Spanning Trees. In: Bayro-Corrochano, E., Eklundh, J.-O. (eds.) CIARP 2009. LNCS, vol. 5856, pp. 272–278. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Veltkamp, R.C., Hagendoorn, M.: State-of-the-art in shape matching. In: Principles of Visual Information Retrieval, pp. 87–119. Springer (2001)Google Scholar
  18. 18.
    Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Francesca Cagliari
    • 1
  • Massimo Ferri
    • 1
    • 3
  • Luciano Gualandri
    • 1
  • Claudia Landi
    • 2
    • 3
  1. 1.Dip. di MatematicaUniv. di BolognaItaly
  2. 2.Dip. di Scienze e Metodi dell’IngegneriaUniv. di Modena e Reggio EmiliaItaly
  3. 3.ARCESUniv. di BolognaItaly

Personalised recommendations