Persistent Homology for 3D Reconstruction Evaluation

  • Antonio Gutierrez
  • David Monaghan
  • María José Jiménez
  • Noel E. O’Connor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7309)


Space or voxel carving is a non-invasive technique that is used to produce a 3D volume and can be used in particular for the reconstruction of a 3D human model from images captured from a set of cameras placed around the subject. In [1], the authors present a technique to quantitatively evaluate spatially carved volumetric representations of humans using a synthetic dataset of typical sports motion in a tennis court scenario, with regard to the number of cameras used. In this paper, we compute persistent homology over the sequence of chain complexes obtained from the 3D outcomes with increasing number of cameras. This allows us to analyze the topological evolution of the reconstruction process, something which as far as we are aware has not been investigated to date.


voxel carving volume reconstruction persistent homology evaluation 


  1. 1.
    Monaghan, D., Kelly, P., OConnor, N.E.: Quantifying Human Reconstruction Accuracy for Voxel Carving in a Sporting Environment. In: ACM MM, Scottsdale, AZ, November 28 - December 1 (2011)Google Scholar
  2. 2.
    Broadhurst, A., Drummond, T., Cipolla, R.: A probabilistic framework for space carving. In: Conf. on Computer Vision, vol. 1, p. 388 (2001)Google Scholar
  3. 3.
    Culbertson, W.B., Malzbender, T., Slabaugh, G.: Generalized voxel coloring. In: Intern. Workshop on Vision Algorithms: Theory and Practice, pp. 100–115 (1999)Google Scholar
  4. 4.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: FOCS 2000, pp. 454–463. IEEE Computer Society (2000)Google Scholar
  5. 5.
    Gonzalez-Diaz, R., Ion, A., Jimenez, M.J., Poyatos, R.: Incremental-Decremental Algorithm for Computing AT-Models and Persistent Homology. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part I. LNCS, vol. 6854, pp. 286–293. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Gonzalez-Díaz, R., Medrano, B., Sánchez-Peláez, J., Real, P.: Simplicial Perturbation Techniques and Effective Homology. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS, vol. 4194, pp. 166–177. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Gonzalez-Diaz, R., Real, P.: On the cohomology of 3D digital images. Discrete Applied Math. 147(2-3), 245–263 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Hatcher, A.: Algebraic Topology. Cambridge University Press (2002)Google Scholar
  9. 9.
    Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. Intern. Journal of Computer Vision 38, 199–218 (2000)zbMATHCrossRefGoogle Scholar
  10. 10.
    Munkres, J.: Elements of Algebraic Topology. Addison-Wesley Co. (1984)Google Scholar
  11. 11.
    Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 519–528 (2006)Google Scholar
  12. 12.
    Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete and Computational Geometry 33(2), 249–274 (2005)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Antonio Gutierrez
    • 1
  • David Monaghan
    • 2
  • María José Jiménez
    • 1
  • Noel E. O’Connor
    • 2
  1. 1.Applied Math Department, School of Computer EngineeringUniversity of SevilleSevillaSpain
  2. 2.CLARITY: Centre for Sensor Web TechnologiesDublin City UniversityIreland

Personalised recommendations