Deletion of (26,6)-Simple Points as Multivalued Retractions

  • Carmen Escribano
  • Antonio Giraldo
  • María Asunción Sastre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7309)


In a recent paper we have introduced a notion of multivalued continuity in digital spaces which extends the usual notion of digital continuity and allows to define topological notions, like retractions, in a far more realistic way than by using just single-valued digitally continuous functions. In particular, we have characterized the deletion of simple points in 2-D, one of the most important processing operations in digital topology, as a particular kind of retraction. In this work we extend some of these results to 3-dimensional digital sets.


Digital topology continuous multivalued function simple point retraction 


  1. 1.
    Bertrand, G., Mandalain, G.: A new characterization of three-dimensional simple points. Pattern Recognition Letters 15, 169–175 (1994)zbMATHCrossRefGoogle Scholar
  2. 2.
    Boxer, L.: Digitally continuous functions. Pattern Recognition Letters 15, 833–839 (1994)zbMATHCrossRefGoogle Scholar
  3. 3.
    Boxer, L.: A Classical Construction for the Digital Fundamental Group. Journal of Mathematical Imaging and Vision 10, 51–62 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Boxer, L.: Properties of Digital Homotopy. Journal of Mathematical Imaging and Vision 22, 19–26 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Escribano, C., Giraldo, A., Sastre, M.A.: Digitally Continuous Multivalued Functions. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 81–92. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Escribano, C., Giraldo, A., Sastre, M.A.: Digitally continuous multivalued functions, morphological operations and thinning algorithms. Journal of Mathematical Imaging and Vision 42(1), 76–91 (2012)CrossRefGoogle Scholar
  7. 7.
    Fourey, S., Malgouyres, M.: A concise characterization of 3D simple points. Discrete Applied Mathematics 125, 59–80 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Khalimsky, E.: Topological structures in computer science. Journal of Applied Mathematics and Simulation 1, 25–40 (1987)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Klette, R., Rosenfeld, A.: Digital Geometry. Elsevier (2004)Google Scholar
  10. 10.
    Kong, T.Y.: A digital fundamental group. Comp. Graphics 13, 159–166 (1989)CrossRefGoogle Scholar
  11. 11.
    Kong, T.Y., Rosenfeld, A.: Digital Topology: Introduction and survey. Computer Vision, Graphic and Image Processing 48, 357–393 (1989)CrossRefGoogle Scholar
  12. 12.
    Kong, T.Y., Rosenfeld, A. (eds.): Topological algorithms for digital image processing. Elsevier (1996)Google Scholar
  13. 13.
    Kovalevsky, V.: A new concept for digital geometry. In: Ying-Lie, O., et al. (eds.) Shape in Picture. Proc. of the NATO Advanced Research Workshop, Driebergen, The Netherlands (1992); Computer and Systems Sciences 126. Springer (1994)Google Scholar
  14. 14.
    Rosenfeld, A.: Digital topology. The American Mathematical Monthly 86(8), 621–630 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Rosenfeld, A.: Continuous functions in digital pictures. Pattern Recognition Letters 4, 177–184 (1986)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Carmen Escribano
    • 1
  • Antonio Giraldo
    • 1
  • María Asunción Sastre
    • 1
  1. 1.Departamento de Matemática Aplicada, Facultad de InformáticaUniversidad PolitécnicaBoadilla del MonteSpain

Personalised recommendations