A Framework for Label Images

  • Loïc Mazo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7309)

Abstract

Label images need a specific topological model to take into account not only the topologies of the regions but also the topology of the partition. We propose a framework for label images in which all the regions of the initial partition and of any coarser partition of the space can be explicitly represented. Some properties of the model are given and a local transformation that preserves the weak homotopy types of all the regions of all the partitions is defined.

Keywords

Label image simple point homotopy type 

References

  1. 1.
    Ayala, R., Domínguez, E., Francés, A.R., Quintero, A.: Digital Lighting Functions. In: Ahronovitz, E. (ed.) DGCI 1997. LNCS, vol. 1347, pp. 139–150. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    Bazin, P.-L., Ellingsen, L.M., Pham, D.L.: Digital Homeomorphisms in Deformable Registration. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 211–222. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Bazin, P.-L., Pham, D.L.: Topology-preserving tissue classification of magnetic resonance brain images. IEEE Transactions on Medical Imaging 26(4), 487–496 (2007)CrossRefGoogle Scholar
  4. 4.
    Cointepas, Y., Bloch, I., Garnero, L.: A cellular model for multi-objects multi-dimensional homotopic deformations. Pattern Recognition 34, 1785–1798 (2001)MATHCrossRefGoogle Scholar
  5. 5.
    Damiand, G., Dupas, A., Lachaud, J.-O.: Fully deformable 3D digital partition model with topological control. Pattern Recognition Letters 32, 1374–1383 (2011)CrossRefGoogle Scholar
  6. 6.
    Kong, T.Y., Rosenfeld, A.: Digital topology: Introduction and survey. Computer Vision, Graphics, and Image Processing 48, 357–393 (1989)CrossRefGoogle Scholar
  7. 7.
    Latecki, L.J.: Multicolor well-composed pictures. Pattern Recognition Letters 16(4), 425–431 (1995)CrossRefGoogle Scholar
  8. 8.
    Liu, J., Huang, S., Nowinski, W.: Registration of brain atlas to MR images using topology preserving front propagation. Journal of Signal Processing Systems 55(1), 209–216 (2009)CrossRefGoogle Scholar
  9. 9.
    Mangin, J.-F., Frouin, V., Bloch, I., Régis, J., López-Krahe, J.: From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. Journal of Mathematical Imaging and Vision 5(4), 297–318 (1995)CrossRefGoogle Scholar
  10. 10.
    Mazo, L., Passat, N., Couprie, M., Ronse, C.: Digital imaging: A unified topological framework. Journal of Mathematical Imaging and Vision (to appear, 2012), doi:10.1007/s10851-011-0308-9Google Scholar
  11. 11.
    Mazo, L., Passat, N., Couprie, M., Ronse, C.: Topology on digital label images. Journal of Mathematical Imaging and Vision (to appear, 2012), doi:10.1007/s10851-011-0325-8Google Scholar
  12. 12.
    Miri, S., Passat, N., Armspach, J.-P.: Topology-Preserving Discrete Deformable Model: Application to Multi-segmentation of Brain MRI. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008. LNCS, vol. 5099, pp. 67–75. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Pham, D., Bazin, P.-L., Prince, J.: Digital topology in brain imaging. IEEE Signal Processing Magazine 27(4), 51–59 (2010)CrossRefGoogle Scholar
  14. 14.
    Poupon, F., Mangin, J.-F., Hasboun, D., Poupon, C., Magnin, I.E., Frouin, V.: Multi-object Deformable Templates Dedicated to the Segmentation of Brain Deep Structures. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1134–1143. Springer, Heidelberg (1998)Google Scholar
  15. 15.
    Ronse, C., Agnus, V.: Morphology on label images: Flat-type operators and connections. Journal of Mathematical Imaging and Vision 22(2), 283–307 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ronse, C., Agnus, V.: Geodesy on label images, and applications to video sequence processing. Journal of Visual Communication and Image Representation 19, 392–408 (2008)CrossRefGoogle Scholar
  17. 17.
    Siqueira, S., Latecki, L.J., Tustison, N., Gallier, J., Gee, J.: Topological repairing of 3D digital images. Journal of Mathematical Imaging and Vision 30(3), 249–274 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Loïc Mazo
    • 1
  1. 1.LSIIT, UMR CNRS 7005Université de StrasbourgFrance

Personalised recommendations