Skip to main content

Nyström Approximate Model Selection for LSSVM

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7301))

Included in the following conference series:

Abstract

Model selection is critical to least squares support vector machine (LSSVM). A major problem of existing model selection approaches is that a standard LSSVM needs to be solved with O(n 3) complexity for each iteration, where n is the number of training examples. In this paper, we propose an approximate approach to model selection of LSSVM. We use Nyström method to approximate a given kernel matrix by a low rank representation of it. With such approximation, we first design an efficient LSSVM algorithm and theoretically analyze the effect of kernel matrix approximation on the decision function of LSSVM. Based on the matrix approximation error bound of Nyström method, we derive a model approximation error bound, which is a theoretical guarantee of approximate model selection. We finally present an approximate model selection scheme, whose complexity is lower than the previous approaches. Experimental results on benchmark datasets demonstrate the effectiveness of approximate model selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cawley, G.C., Talbot, N.L.C.: Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Networks 17(10), 1467–1475 (2004)

    Article  MATH  Google Scholar 

  2. Cawley, G.C., Talbot, N.L.C.: Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters. Journal of Machine Learning Research 8, 841–861 (2007)

    MATH  Google Scholar 

  3. Cawley, G.C., Talbot, N.L.C.: On over-fitting in model selection and subsequent selection bias in performance evaluation. Journal of Machine Learning Research 11, 2079–2107 (2010)

    MathSciNet  Google Scholar 

  4. Chapelle, O., Vapnik, V.: Model selection for support vector machines. In: Advances in Neural Information Processing Systems, vol. 12, pp. 230–236. MIT Press, Cambridge (2000)

    Google Scholar 

  5. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Machine Learning 46(1), 131–159 (2002)

    Article  MATH  Google Scholar 

  6. Cortes, C., Mohri, M., Talwalkar, A.: On the impact of kernel approximation on learning accuracy. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS), Sardinia, Italy, pp. 113–120 (2010)

    Google Scholar 

  7. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MATH  Google Scholar 

  8. Drineas, P., Mahoney, M.: On the Nyström method for approximating a Gram matrix for improved kernel-based learning. Journal of Machine Learning Research 6, 2153–2175 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Duan, K., Keerthi, S., Poo, A.: Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing 51, 41–59 (2003)

    Article  Google Scholar 

  10. Golub, G., Van Loan, C.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  11. Guyon, I., Saffari, A., Dror, G., Cawley, G.: Model selection: Beyond the Bayesian / frequentist divide. Journal of Machine Learning Research 11, 61–87 (2010)

    MathSciNet  Google Scholar 

  12. Higham, N.: Accuracy and stability of numerical algorithms. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  13. Kumar, S., Mohri, M., Talwalkar, A.: Sampling techniques for the Nyström method. In: Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS), Clearwater, Florida, USA, pp. 304–311 (2009)

    Google Scholar 

  14. Luntz, A., Brailovsky, V.: On estimation of characters obtained in statistical procedure of recognition. Technicheskaya Kibernetica 3 (1969) (in Russian)

    Google Scholar 

  15. Rätsch, G., Onoda, T., Müller, K.: Soft margins for AdaBoost. Machine Learning 42(3), 287–320 (2001)

    Article  MATH  Google Scholar 

  16. Suykens, J., Vandewalle, J.: Least squares support vector machine classifiers. Neural Processing Letters 9(3), 293–300 (1999)

    Article  MathSciNet  Google Scholar 

  17. Vapnik, V., Chapelle, O.: Bounds on error expectation for support vector machines. Neural Computation 12(9), 2013–2036 (2000)

    Article  Google Scholar 

  18. Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, New York (1998)

    MATH  Google Scholar 

  19. Williams, C., Seeger, M.: Using the Nyström method to speed up kernel machines. In: Advances in Neural Information Processing Systems 13, pp. 682–688. MIT Press, Cambridge (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ding, L., Liao, S. (2012). Nyström Approximate Model Selection for LSSVM. In: Tan, PN., Chawla, S., Ho, C.K., Bailey, J. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2012. Lecture Notes in Computer Science(), vol 7301. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30217-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30217-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30216-9

  • Online ISBN: 978-3-642-30217-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics