Skip to main content

A Kinect-Based Natural Interface for Quadrotor Control

  • Conference paper
Intelligent Technologies for Interactive Entertainment (INTETAIN 2011)

Abstract

The evolution of input device technologies led to identification of the natural user interface (NUI) as the clear evolution of the human-machine interaction, following the shift from command-line interfaces (CLI) to graphical user interfaces (GUI). The design of user interfaces requires a careful mapping of complex user “actions” in order to make the human-computer interaction (HCI) more intuitive, usable, and receptive to the user’s needs: in other words, more user-friendly and, why not, fun. NUIs constitute a direct expression of mental concepts and the naturalness and variety of gestures, compared with traditional interaction paradigms, can offer unique opportunities also for new and attracting forms of human-machine interaction. In this paper, a kinect-based NUI is presented; in particular, the proposed NUI is used to control the Ar.Drone quadrotor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ar.Drone, http://ardrone.parrot.com

  2. Bhuiyan, M.A., Ampornaramveth, V., Muto, S., Ueno, H.: Realtime vision based Gesture Recognition for Human Robot Interaction. In: The IEEE International Conference on Robotics and Biometrics, pp. 413–418 (2004)

    Google Scholar 

  3. Bolt, R.A.: Put-that-there: Voice and gesture at the graphics interface. ACM Comput. Graphics 14(3), 262–270 (1980)

    Article  MathSciNet  Google Scholar 

  4. Bugeau, A., Pérez, P.: Detection and segmentation of moving objects in complex scenes. Computer Vision and Image Understanding 113(4), 459–476 (2009)

    Article  Google Scholar 

  5. Chao, N., Meng, M.Q., Xiaoping Liu, P., Wmg, X.: Visual gesutre recognition for human-machine interface of robot teleoperation. In: The 2003 IEEEIRSJ Intl. Conference on Intelligent Robots and Systems, pp. 1560–1565 (2003)

    Google Scholar 

  6. De Amici, S., Sanna, A., Lamberti, F., Pralio, B.: A Wii Remote-based infrared-optical tracking system. Entertainment Computing 1(3-4), 119–124 (2010)

    Article  Google Scholar 

  7. FAAST, http://projects.ict.usc.edu/mxr/faast/

  8. Koceski, S., Koceska, N.: Vision-based gesture recognition for human-computer interaction and mobile robot’s freight ramp control. In: The 32nd International Conference on Information Technology Interfaces, pp. 289–294 (2010)

    Google Scholar 

  9. Kofman, J., Wu, X., Luu, T.J., Verma, S.: Teleoperation of a robot manipulator using a vision-based human-robot interface. IEEE Transactions on Industrial Electronics 52(5), 1206–1219 (2005)

    Article  Google Scholar 

  10. Malassiotis, S., Aifanti, N., Strintzis, M.G.: A gesture recognition system using 3D data. In: The 1st International Symposium on 3D Data Processing Visualization and Transmission, pp. 190–193 (2002)

    Google Scholar 

  11. Mariappan, R.: Video Gesture Recognition System. In: The International Conference on Conference on Computational Intelligence and Multimedia Applications, pp. 519–521 (2007)

    Google Scholar 

  12. Microsoft Kinect, http://www.xbox.com/en-US/kinect/

  13. OpenKinect, http://openkinect.org/wiki/Main_Page

  14. OpenNI, http://www.openni.org/

  15. Pavlovic, V.I., Sharma, R., Huang, T.S.: Gestural interface to a visual computing environment for molecular biologists. In: 2nd Intern. Conf. on Automatic Face and Gesture Recognition, pp. 52–73. IEEE Computer Society, Los Alamitos (1996)

    Google Scholar 

  16. Pavlovic, V.I., Sharma, R., Huang, T.S.: Visual interpretation of hand gestures for human-computer interaction: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 677–695 (1997)

    Article  Google Scholar 

  17. Popa, D., Simion, G., Gui, V., Otesteanu, M.: Real time trajectory based hand gesture recognition. WSEAS Transactions on Information Science and Applications 5(4), 532–546 (2008)

    Google Scholar 

  18. Ribeiro, H.L., Gonzaga, A.: Hand Image Segmentation in Video Sequence by GMM: a comparative analysis. In: The 19th Brazilian Symposium on Computer Graphics and Image Processing, pp. 357–364 (2006)

    Google Scholar 

  19. Rao, V.S., Mahanta, C.: Gesture Based Robot Control. In: The 4th International Conference on Intelligent Sensing and Information Processing, pp. 145–148 (2006)

    Google Scholar 

  20. Selker, T.: Touching the future. Commun. ACM 51, 14–16 (2008)

    Article  Google Scholar 

  21. Soshi Iba, C.J.P., Michael Vande Weghe, J., Khosla, P.K.: An Architecture for Gesture-based Control of Mobile Robots. In: The IEEEIRSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 851–857 (1999)

    Google Scholar 

  22. Stergiopoulou, E., Papamarkos, N.: A New Technique for Hand Gesture Recognition. In: The IEEE International Conference on Image Processing, pp. 2657–2660 (2006)

    Google Scholar 

  23. Sturman, D.J., Zetler, D.: A survey of glove based input. IEEE Computer Graphics and Applications 14, 30–39 (1994)

    Article  Google Scholar 

  24. Controlling the AR Drone with Microsoft Surface, http://blogs.msdn.com/b/surface/archive/2011/01/27/controlling-the-ar-drone-with-surface.aspx

  25. Wachs, J.P., Stern, H., Eden, Y.: Parameter search for an image processing-Fuzzy c-Means hand gesture recognition system. In: The IEEE Int. Conf. on Image Processing, pp. 341–344 (2003)

    Google Scholar 

  26. Wachs, J.P., Stern, H., Edan, Y.: Cluster Labeling and Parameter Estimation for the Automated setup of a Hand gesture Recognition System. IEEE Transactions Systems and Humans 35(6), 932–944 (2005)

    Article  Google Scholar 

  27. Controlling the AR Drone with Nintendo Wiimote, http://www.youtube.com/watch?v=zJ50H-_431w&feature=player_embedded

  28. Wright, A.: Making sense of sensors. Commun. ACM 52, 14–15 (2009)

    Google Scholar 

  29. The Virtual-Reality Peripheral Network, http://www.cs.unc.edu/Research/vrpn/

  30. Controlling the AR Drone with Microsoft Kinect, http://www.youtube.com/watch?v=jDJpb4xXAJM

  31. Hand tracking to control the AR Drone with Microsoft Kinect, http://dronehacks.com/2010/12/21/controlling-the-ar-drone-with-a-kinect-controller/

  32. Hand tracking to control the AR Drone with Microsoft Kinect, http://www.youtube.com/watch?v=mREorv0hbY8

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Sanna, A., Lamberti, F., Paravati, G., Henao Ramirez, E.A., Manuri, F. (2012). A Kinect-Based Natural Interface for Quadrotor Control. In: Camurri, A., Costa, C. (eds) Intelligent Technologies for Interactive Entertainment. INTETAIN 2011. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30214-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30214-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30213-8

  • Online ISBN: 978-3-642-30214-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics