Skip to main content

Evidence of Non-Universality of von Kármán’s κ

  • Chapter
  • First Online:
Experimental and Computational Solutions of Hydraulic Problems

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

Abstract

A notable universal feature of wall-bounded turbulent flows is the universal logarithmic law of the wall deduced by Theodore von Kármán. This law of the wall describes how time-averaged streamwise velocity changes with distance from the wall. Despite the law of the wall having a universal von Kármán constant κ = 0.41 that governs the slope of the log-law velocity profile, as commonly known over a period of about 80 years, in fluvial streams there are a number of instances of the non-universality of κ. To be specific, it behaves as a variable in flows with low relative submergence, or where there is bed-load and/or suspended-load sediment transport. This article focuses on the aspect of non-universality of κ by inviting various open questions relating to future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bayazit M (1976) Free surface flow in a channel of large relative roughness. J Hydraul Res 14(2):115–126

    Article  Google Scholar 

  • Bennett SJ, Bridge JS (1995) The geometry and dynamics of low-relief bed forms in heterogeneous sediment in a laboratory channel, and their relationship to water flow and sediment transport. J Sediment Res A65:29–39

    Google Scholar 

  • Best J, Bennett S, Bridge J, Leeder M (1997) Turbulence modulation and particle velocities over flat sand beds at low transport rates. J Hydraul Eng 123(12):1118–1129

    Article  Google Scholar 

  • Bohlen WF (1969) Hotwire anemometer study of turbulence in open-channel flows transporting neutrally buoyant particles. Report number 69-1, Experimental sedimentology laboratory, Department of earth and planetary sciences, Massachusetts institute of technology, Cambridge, Mass, USA

    Google Scholar 

  • Cellino M, Graf WH (1999) Sediment-laden flow in open-channels under noncapacity and capacity conditions. J Hydraul Eng 125(5):455–462

    Article  Google Scholar 

  • Cioffi F, Gallerano F (1991) Velocity and concentration profiles of solid particles in a channel with movable and erodible bed. J Hydraul Res 29(3):387–401

    Article  Google Scholar 

  • Coleman NL (1981) Velocity profiles with suspended sediment. J Hydraul Res 19(3):211–227

    Article  Google Scholar 

  • Coleman NL (1986) Effects of suspended sediment on the open-channel velocity distribution. Water Resour Res 22(10):1377–1384

    Article  Google Scholar 

  • Cooper JR (2006) Spatially-induced momentum transfer over water-worked gravel beds. PhD thesis, The University of Sheffield, Sheffield, UK

    Google Scholar 

  • Dey S, Raikar RV (2007) Characteristics of loose rough boundary streams at near-threshold. J Hydraul Eng 133(3):288–304

    Article  Google Scholar 

  • Dey S, Das R, Gaudio R, Bose SK (2012) Turbulence in mobile-bed streams. Acta Geophysica (in press)

    Google Scholar 

  • Dittrich A, Hammann de Salazar K (1993) Bed instability caused by clear water flow. Final report of project Eroslope (EV5 V-CT92-0179), Institute for hydraulic engineering, Braunschweig technical university, Germany

    Google Scholar 

  • Dittrich A, Koll K (1997) Velocity field and resistance of flow over rough surface with large and small relative submergence. Int J Sedim Res 12(3):21–33

    Google Scholar 

  • Einstein HA, Chien N (1955) Effects of heavy sediment concentration near the bed on velocity and sediment distribution. MRD sediment series report number 8, University of California, Berkeley, US Army Corps of Engineers, Missouri Division, St. Louis, MO, USA

    Google Scholar 

  • Elata C, Ippen AT (1961) The dynamics of open channel flow with suspensions of neutrally buoyant particles. Technical report number 45, Massachusetts institute of technology, Boston, MA, USA

    Google Scholar 

  • Gallagher M, McEwan I, Nikora V (1999) The changing structure of turbulence over a self-stabilising sediment bed. Internal report number 21, Department of Engineering, University of Aberdeen, Aberdeen, UK

    Google Scholar 

  • Gaudio R, Miglio A, Calomino F (2011) Friction factor and von Kármán’s κ in open channels with bed-load. J Hydraul Res 49(2):239–247

    Article  Google Scholar 

  • Gaudio R, Miglio A, Dey S (2010) Non-universality of von Kármán’s κ in fluvial streams. J Hydraul Res 48(5):658–663

    Article  Google Scholar 

  • Guo J, Julien PY (2001) Turbulent velocity profiles in sediment-laden flows. J Hydraul Res 39(1):11–23

    Article  Google Scholar 

  • Gust G, Southard JB (1983) Effects of weak bed load on the universal law of the wall. J Geophys Res 88(C10):5939–5952

    Google Scholar 

  • Gyr A, Schmid A (1997) Turbulent flows over smooth erodible sand beds in flumes. J Hydraul Res 35(4):525–544

    Article  Google Scholar 

  • Hetsroni G, Zakin JL, Mosyak A (1997) Low-speed streaks in drag-reduced turbulent flow. Phys Fluids 9(8):2397–2404

    Article  Google Scholar 

  • Hino M (1963) Turbulent flow with suspended particles. J Hydraul Div 89(HY4):161–185

    Google Scholar 

  • Hughes RL (2007) A mathematical determination of von Kármán’s constant, κ. J Hydraul Res 45(4):563–566

    Article  Google Scholar 

  • Ippen AT (1971) A new look at sedimentation in turbulent streams. J Boston Soc Civil Eng 58(3):131–163

    Google Scholar 

  • Kirkbride A (1993) Observations of the influence of bed roughness on turbulence structure in depth limited flows over gravel beds. In: Clifford NJ, French JR, Hardisty J (eds.) Turbulence: perspectives on flow and sediment transport, Wiley, Chichester, pp 185–196

    Google Scholar 

  • Koll K (2002) Feststofftransport und Geschwindigkeitsverteilung in Raugerinnen. Karlsruhe University, Fak. f. Bauingenieur- und Vermessungswesen, Diss. v. 12.07.2002, http://www.ubka.uni-karlsruhe.de/cgibin/

  • Koll K (2006) Parameterisation of the vertical velocity profile in the wall region over rough surfaces. In: Ferreira RML, Alves ECTL, Leal JGAB, Cardoso AH (eds.) River flow 2006, Taylor & Francis, London, Proceedings of international conference of fluvial hydraulics, Lisbon, Portugal, pp 163–171

    Google Scholar 

  • Lo TS, L’vov VS, Pomyalov A, Procaccia I (2005) Estimating von Kármán’s constant from homogeneous turbulence. Europhys Lett 72(6):943–949

    Article  Google Scholar 

  • Long CE, Wiberg PL, Nowell ARM (1993) Evaluation of von Kármán’s constant from integral flow parameters. J Hydraul Eng 119(10):1182–1190

    Article  Google Scholar 

  • Lyn DA (1986) Turbulence and turbulent transport in sediment-laden open-channel flows. Report number KH-R-49, In: Keck WM (ed.) Laboratory of hydraulic and water resources, California Institute of Technology, Pasadena, CA, USA

    Google Scholar 

  • Muste M (2002) Sources of bias errors in flume experiments on suspended-sediment transport. J Hydraul Res 40(6):695–708

    Article  Google Scholar 

  • Nezu I, Azuma R (2004) Turbulence characteristics and interaction between particles and fluid in particle-laden open channel flows. J Hydraul Eng 130(10):988–1001

    Article  Google Scholar 

  • Nikora VI, Goring DG (1999) Effects of bed mobility on turbulence structure. NIWA Internal report number 48, NIWA, Christchurch, New Zealand

    Google Scholar 

  • Nikora V, Goring D (2000) Flow turbulence over fixed and weakly mobile gravel beds. J Hydraul Eng 126(9):679–690

    Article  Google Scholar 

  • Nikora V, Goring D, McEwan I, Griffiths G (2000) Spatially averaged open-channel flow over rough bed. J Hydraul Eng 127(2):123–133

    Article  Google Scholar 

  • Nouh M (1989) The von-Kármán coefficient in sediment laden flow. J Hydraul Res 27(4):477–499

    Article  Google Scholar 

  • Owen PR (1964) Saltation of uniform grains in air. J Fluid Mech 20:225–242

    Article  Google Scholar 

  • Packman AI, Salehin M, Zaramella M (2004) Hyporheic exchange with gravel beds: Basic hydrodynamic interactions and bedform-induced advective flows. J Hydraul Eng 130(7):647–656

    Article  Google Scholar 

  • Paintal AS, Garde RJ (1964) Discussion of ‘suspended transportation mechanics: suspension of sediment’. J Hydraul Div 90(HY4):257–265

    Google Scholar 

  • Pokrajac D, Finnigan JJ, Manes C, McEwan I, Nikora V (2006) On the definition of the shear velocity in rough bed open channel flows. In: Ferreira RML, Alves ECTL, Leal JGAB, Cardoso AH (eds.) River flow 2006, Taylor & Francis, London, UK, Proceedings of international conference of fluvial hydraulics, Lisbon, Portugal pp 88–96

    Google Scholar 

  • Rand W (1953) Discussion of ‘some effects of suspended sediment on flow characteristics’. In: Proceedings of fifth hydraulics conference, Bulletin 34, State University of Iowa, Iowa City, Iowa, USA pp 156–158

    Google Scholar 

  • Sirovich L, Karlsson S (1997) Turbulent drag reduction by passive mechanisms. Nature 388:753–755

    Article  Google Scholar 

  • Smith JD, McLean SR (1977) Spatially averaged flow over a wavy surface. J Geophys Res 82(12):1735–1746

    Article  Google Scholar 

  • Tiederman WG, Luchik TS, Bogard DG (1985) Wall layer structure and drag reduction. J Fluid Mech 156:419–437

    Article  Google Scholar 

  • Vanoni VA (1946) Transportation of suspended sediment by water. Trans Am Soc Civil Eng 111:67–133

    Google Scholar 

  • Vanoni VA, Nomicos GN (1960) Resistance properties of sediment laden stream. Trans Am Soc Civil Eng 125:1140–1175

    Google Scholar 

  • van Rijn LC (1993) Principles of sediment transport in rivers, estuaries and coastal seas. Aqua Publications, The Netherlands

    Google Scholar 

  • von Kármán T (1930) Mechanische ähnlichkeit and turbulenz. Nachrichten der Adademie der Wissenchaften Göttingen, Mathematisch-Physikali-Sche Klasse 58–76

    Google Scholar 

  • Wang X, Qian N (1992) Velocity profiles of sediment-laden flow. Int J Sedim Res 7(1):27–58

    Google Scholar 

  • Wang X, Wang ZY, Yu M, Li D (2001) Velocity profile of sediment suspensions and comparison of log-law and wake-law. J Hydraul Res 39(2):211–217

    Article  Google Scholar 

Download references

Acknowledgments

The Taylor and Francis Group is kindly acknowledged for having granted free permission of reuse of the content of the chapter Gaudio et al. (2010) (www.tandfonline.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Gaudio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gaudio, R., Dey, S. (2013). Evidence of Non-Universality of von Kármán’s κ. In: Rowiński, P. (eds) Experimental and Computational Solutions of Hydraulic Problems. GeoPlanet: Earth and Planetary Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30209-1_4

Download citation

Publish with us

Policies and ethics