Skip to main content

A Fast Algorithm for Computing the Quartet Distance for Large Sets of Evolutionary Trees

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7292))

Included in the following conference series:

  • 992 Accesses

Abstract

We present the QuickQuartet algorithm for computing the all-to-all quartet distance for large evolutionary tree collections. By leveraging the relationship between bipartitions and quartets, our approach significantly improves upon the performance of existing quartet distance algorithms. To explore QuickQuartet’s performance, sets of biological data containing 20,000 and 33,306 trees over 150 taxa and 567 taxa, respectively are analyzed. Experimental results show that QuickQuartet is up to 100 times faster than existing methods. With the availability of QuickQuartet, the use of quartet distance as a tool for analysis of evolutionary relationships becomes a practical tool for biologists to use in order to gain new insights regarding their large tree collections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brodal, G.S., Fagerberg, R., Pedersen, C.N.S.: Computing the Quartet Distance between Evolutionary Trees in Time O(nlog2 n). In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 731–742. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Davis, B.W., Li, G., Murphy, W.J.: Supermatrix and species tree methods resolve phylogenetic relationships within the big cats, panthera (carnivora: Felidae). Molecular Phylogenetics and Evolution 56(1), 64–76 (2010)

    Article  Google Scholar 

  3. Huelsenbeck, J.P., Ronquist, F.: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8), 754–755 (2001)

    Article  Google Scholar 

  4. Lewis, L.A., Lewis, P.O.: Unearthing the molecular phylodiversity of desert soil green algae (chlorophyta). Syst. Bio. 54(6), 936–947 (2005)

    Article  Google Scholar 

  5. Mailund, T., Pedersen, C.N.S.: QDist–quartet distance between evolutionary trees. Bioinformatics 20(10), 1636–1637 (2004)

    Article  Google Scholar 

  6. Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Mathematical Biosciences 53, 131–147 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Schmidt, H.A., Strimmer, K., Vingron, M., von Haeseler, A.: Tree-puzzle: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18(3), 502–504 (2002)

    Article  Google Scholar 

  8. Soltis, D.E., Gitzendanner, M.A., Soltis, P.S.: A 567-taxon data set for angiosperms: The challenges posed by bayesian analyses of large data sets. Int. J. Plant Sci. 168(2), 137–157 (2007)

    Article  Google Scholar 

  9. Steel, M.A., Penny, D.: Distributions of tree comparision metrics—some new results. Systematic Biology 42(2), 126–141 (1993)

    MathSciNet  Google Scholar 

  10. Stissing, M., Mailund, T., Pedersen, C., Brodal, G., Fagerberg, R.: Computing the all-pairs quartet distance on a set of evolutionary trees. Journal of Bioinformatics & Computational Biology 6(1), 37–50 (2008)

    Article  Google Scholar 

  11. Sul, S.-J., Williams, T.L.: An Experimental Analysis of Robinson-Foulds Distance Matrix Algorithms. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 793–804. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Swofford, D.L.: PAUP*: Phylogenetic analysis using parsimony (and other methods), Sinauer Associates, Underland, Massachusetts, Version 4.0 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Crosby, R.W., Williams, T.L. (2012). A Fast Algorithm for Computing the Quartet Distance for Large Sets of Evolutionary Trees. In: Bleris, L., Măndoiu, I., Schwartz, R., Wang, J. (eds) Bioinformatics Research and Applications. ISBRA 2012. Lecture Notes in Computer Science(), vol 7292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30191-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30191-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30190-2

  • Online ISBN: 978-3-642-30191-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics