Skip to main content

Recent and Future Evolution of the Stratospheric Ozone Layer

  • Chapter
  • First Online:
Atmospheric Physics

Part of the book series: Research Topics in Aerospace ((RTA))

Abstract

Since the early 1980s significant depletion of the ozone layer in the stratosphere, in other words the ozone hole, has been observed every year over the South Pole area in Antarctic spring. In the meantime destruction of stratospheric ozone has been detected globally. Emissions of man-made halogenated chemicals play a dominant role in ozone loss. Combined analyses of observations and numerical modeling help to understand the complex interplay of the dynamic and chemical processes involved. Evaluated models provide a base for predicting the future recovery of the ozone layer expected for the middle of this century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bates, D.R., Nicolet, M.: The photochemistry of atmospheric water. J. Geophys. Res. 55, 301–327 (1950)

    Article  ADS  Google Scholar 

  • Carslaw, K.S., Peter, T., Clegg, S.L.: Modeling the composition of liquid stratospheric aerosols. Rev. Geophys. 35(2), 125–154 (1997). doi:10.1029/97RG00078

    Article  ADS  Google Scholar 

  • Crutzen, P.J.: Ozone production rates in an oxygen-hydrogen-nitrogen oxide atmosphere. J. Geophys. Res. 76, 7311–7327 (1971)

    Article  ADS  Google Scholar 

  • Dameris, M., Nodorp, D., Sausen, R.: Correlation analysis of tropopause height and TOMS-data for the EASOE-winter 1991/1992. Beitr. Phys. Atmos. 68, 227–232 (1995)

    Google Scholar 

  • Dameris, M., Grewe, V., Hein, R., Schnadt, C., Brühl, C., Steil, B.: Assessment of the future development of the ozone layer. Geophys. Res. Lett. 25, 3579–3582 (1998)

    Article  ADS  Google Scholar 

  • Dameris, M., Grewe, V., Ponater, M., Deckert, R., Eyring, V., Mager, F., Matthes, S., Schnadt, C., Stenke, A., Steil, B., et al.: Long-term changes and variability in a transient simulation with a chemistry-climate model employing realistic forcing. Atmos. Chem. Phys. 5, 2121–2145 (2005)

    Article  ADS  Google Scholar 

  • Dameris, M., Matthes, S., Deckert, R., Grewe, V., Ponater, M.: Solar cycle effect delays onset of ozone recovery. Geophys. Res. Lett. 33, L03806 (2006). doi:10.1029/2005GL024741

    Article  Google Scholar 

  • Dameris, M., Baldwin, M.P.: Impact of climate change on the stratospheric ozone layer. In: Müller, R. (ed.) Stratospheric Ozone Depletion and Climate Change, pp. 214–252. RSC Publishing, Cambridge CB40WF (2011)

    Google Scholar 

  • Dörnbrack, A., Birner, T., Fix, A., Flentje, H., Meister, A., Schmid, H., Browell, E., Mahoney, V.: Evidence for inertia gravity waves forming polar stratospheric clouds over Scandinavia. J. Geophys. Res. 107 (D20), 8287 (2002). doi:10.1029/2001JD000452

    Google Scholar 

  • Fabry, C., Buisson, H.: L’absorption de l’ultraviolet par l’ozone et la limite du spectre solaire. J. Phys. 3(Série 5), 196–206 (1913)

    Google Scholar 

  • Farman, J.C., Gardiner, B.G., Shanklin, J.D.: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315, 207–210 (1985)

    Article  ADS  Google Scholar 

  • Loyola, D.G., Coldewey-Egbers, M., Dameris, M., Garny, H., Stenke, A., van Roozendael, M., Lerots, C., Balis, D., Koukouli, M.: Global long-term monitoring of the ozone layer—a prerequisite for predictions. Int. J. Rem. Sens. 30, 4295–4318 (2009)

    Article  Google Scholar 

  • Molina, M.J., Rowland, F.S.: Stratospheric sink for chlorofluoromethanes: chlorine atom-catalyzed destruction of ozone. Nature 249, 810–812 (1974)

    Article  ADS  Google Scholar 

  • Ravishankara, A.R., Daniel, J.S., Portmann, R.W.: Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009)

    Article  ADS  Google Scholar 

  • Schumann, U.: Large-eddy simulation of turbulent diffusion with chemical reactions in the convective boundary layer. Atmos. Environ. 23, 1713–1727 (1989)

    Article  Google Scholar 

  • Solomon, S., Garcia, R.R., Rowland, F.S., Wuebbles, D.J.: On the depletion of Antarctic ozone. Nature 321, 755–758 (1986)

    Article  ADS  Google Scholar 

  • Solomon, S.: Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 37(3), 275–316 (1999)

    Article  ADS  Google Scholar 

  • SPARC CCMVal: SPARC Report on the Evaluation of Chemistry-Climate Models. In: Eyring, V., Shepherd, T.G., Waugh, D.W. (eds.) SPARC Report No. 5, WCRP-132, WMO/TD-No. 1526 (2010)

    Google Scholar 

  • Steil, B., Dameris, M., Brühl, C., Crutzen, P.J., Grewe, V., Ponater, M., Sausen, R.: Development of a chemistry module for GCMs: first results of a multiannual integration. Ann. Geophys. 16, 205–228 (1998)

    Article  ADS  Google Scholar 

  • Stenke, A., Dameris, M., Grewe, V., Garny, H.: Implications of Lagrangian transport for simulations with a coupled chemistry-climate model. Atmos. Chem. Phys. 9, 5489–5504 (2009)

    Article  ADS  Google Scholar 

  • Voigt, C., Schreiner, J., Kohlmann, A., Zink, P., Mauersberger, K., Larsen, N., Deshler, T., Kröger, C., Rosen, J., Adriani, A., et al.: Nitric acid trihydrate (NAT) in polar stratospheric clouds. Science 290, 1756–1758 (2000)

    Article  ADS  Google Scholar 

  • Voigt, C., Schlager, H., Luo, B.P., Dörnbrack, A., Roiger, A., Stock, P., Curtius, J., Vössing, H., Borrmann, S., Davies, S., et al.: Nitric acid trihydrate (NAT) formation at low NAT supersaturation in polar stratospheric clouds (PSCs). Atmos. Chem. Phys. 5, 1371–1380 (2005)

    Article  ADS  Google Scholar 

  • Volkert, H., Intes, D.: Orographically forced stratospheric waves over northern Scandinavia. Geophys. Res. Lett. 19, 1205–1208 (1992)

    Article  ADS  Google Scholar 

  • Wirth, M., Renger, W.: Evidence of large scale ozone depletion within the Arctic polar vortex 94/95 based on airborne LIDAR. Geophys. Res. Lett. 13, 813–816 (1996)

    Article  ADS  Google Scholar 

  • Wirth, M., Tsias, A. Dörnbrack, A., Weiß, V., Carslaw, K.S., Leutbecher, M., Renger, W., Volkert, H., Peter, T.: Model-guided Lagrangian observation and simulation of mountain polar stratospheric clouds. J. Geophys. Res. 104 (D19) (1999). doi:10.1029/1998JD100095

  • WMO (World Meteorological Organization): Scientific Assessment of Ozone Depletion: 2010. Global Ozone Research and Monitoring Project, Report No. 52, Geneva (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Dameris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dameris, M., Loyola, D. (2012). Recent and Future Evolution of the Stratospheric Ozone Layer. In: Schumann, U. (eds) Atmospheric Physics. Research Topics in Aerospace. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30183-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30183-4_45

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30182-7

  • Online ISBN: 978-3-642-30183-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics