Skip to main content

Climate Optimized Air Transport

  • Chapter
  • First Online:
Atmospheric Physics

Abstract

Aviation climate impact is caused by CO2 and non-CO2 emissions where the climate effect of non-CO2 emissions depends on weather and aircraft route. An aviation system with minimum climate impact differs from a system with minimum emissions. Considerable potential exists to reduce the climate impact of aviation by weather- and cost-dependent climate-optimized air traffic management (“smart routing”) and aircraft design (“green aircraft”). Current research provides a unique opportunity to systematically investigate the trade-offs between various mitigation concepts and cost functions. Here various approaches are presented to minimize the climate impact on a climatological and weather basis, some being applicable to aircraft designs for reduced climate impact and others offering alternative operational concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brasseur, G.P., Cox, R.A., Hauglustaine, D., Isaksen, I., Lelieveld, J., Lister, D.H., Sausen, R., Schumann, U., Wahner, A., Wiesen, P.: European scientific assessment of the atmospheric effects of aircraft emissions. Atmos. Environ. 32, 2329–2418 (1998)

    Article  Google Scholar 

  • Burkhardt, U., Kärcher, B.: Global radiative forcing from contrail cirrus. Nat. Clim. Change 1, 54–58 (2011). doi:10.1038/NCLIMATE1068

    Article  ADS  Google Scholar 

  • Campbell, S.E., Neogi, N.A., Bragg, N.B.: An operational strategy for persistent contrail mitigation. 9th AIAA Aviation Technology, Integration, and Operations Conference (ATIO), pp. 1–14 (2009)

    Google Scholar 

  • Döpelheuer, A., Lecht, M.: Influence of engine performance on emission characteristics. Gas Turbine Engine Combustion, Emissions and Alternative Fuels, RTO MP-14, ISBN 92-837-0009-0, p. 20, 11 (1999)

    Google Scholar 

  • Fichter, C., Marquart, S., Sausen, R., Lee, D.S.: The impact of cruise altitude on contrails and related radiative forcing. Meteorol. Z. 14, 563–572 (2005). doi:10.1127/0941-2948/2005/0048

    Article  Google Scholar 

  • Fichter, C.: Climate impact of air traffic emissions in dependency of the emission location and altitude. DLR Forschungsbericht 2009-22, ISSN 1434-84543, Oberpfaffenhofen, 152 pp (2009)

    Google Scholar 

  • Fuglestvedt, J.S., Shine, K.P., Berntsen, T., Cook, J., Lee, D.S., Stenke, A., Skeie, R.B., Velders, G.J.M., Waitz, I.A.: Transport impacts on atmosphere and climate: Metrics. Atmos. Environ. 44, 4648–4677 (2010). doi:10.1016/j.atmosenv.2009.04.044

    Article  ADS  Google Scholar 

  • Gauss, M., Isaksen, I.S.A., Wong, S., Wang, W.-C.: Impact of H2O emissions from cryoplanes and kerosene aircraft on the atmosphere. J. Geophys. Res. 108, 4304 (2003). doi:10.1029/2002JD002623

    Article  Google Scholar 

  • Gauss, M., Isaksen, I.S.A., Lee, D.S., Søvde, O.A.: Impact of aircraft NOx emissions on the atmosphere—tradeoffs to reduce the impact. Atmos. Chem. Phys. 6, 1529–1548 (2006)

    Article  ADS  Google Scholar 

  • Gierens, K., Spichtinger, P.: On the size distribution of ice-supersaturated regions in the upper troposphere and lowermost stratosphere. Ann. Geophys. 18, 499–504 (2000). doi:10.1007/s00585-000-0499-7

    Article  ADS  Google Scholar 

  • Gierens, K., Lim, L., Eleftheratos, K.: A review of various strategies for contrail avoidance. Open Atmos. Sci. J. 2, 1–7 (2008)

    Article  ADS  Google Scholar 

  • Green, J.E.: Future aircraft—greener by design? Meteorol. Z. 14, 583–590 (2005). doi:10.1127/0941-2948/2005/0052

    Article  Google Scholar 

  • Grewe, V., Dameris, M., Fichter, C., Lee, D.S.: Impact of aircraft NOx emissions. Part 2: Effects of lowering the flight altitude. Meteorol. Z. 11, 197–205 (2002)

    Article  Google Scholar 

  • Grewe, V., Stenke, A.: AirClim: An efficient tool for climate evaluation of aircraft technology. Atmos. Chem. Phys. 8, 4621–4639 (2008). doi:10.5194/acp-8-4621-2008

    Article  ADS  Google Scholar 

  • Grewe, V., Tsati, E., Hoor, P.: On the attribution of contributions of atmospheric trace gases to emissions in atmospheric model applications. Geosci. Model Dev. 3, 487–499 (2010). doi:10.5194/gmd-3-487-2010

    Article  ADS  Google Scholar 

  • Grooß, J.-U., Brühl, C., Peter, T.: Impact of aircraft emissions on tropospheric and stratospheric ozone. Part I: Chemistry and 2-D model results. Atmos. Environ. 32, 3173–3184 (1998)

    Article  Google Scholar 

  • Haywood, J.M., Allan, R.P., Bornemann, J., Forster, P.M., Francis, P.N., Milton, S., Rädel, G., Rap, A., Shine, K.P., Thorpe, R.: A case study of the radiative forcing of persistent contrails evolving into contrail-induced cirrus. J. Geophys. Res. 114, D24201 (2009). doi:10.1029/2009JD012650

    Article  ADS  Google Scholar 

  • Hendricks, J., Kärcher, B., Lohmann, U.: Effects of ice nuclei on cirrus clouds in a global climate model. J. Geophys. Res. 116, D18206 (2011). doi:10.1029/2010JD015302

    Article  ADS  Google Scholar 

  • HLGAR.: Flightpath 2050—Europe’s Vision for Aviation 2011: Report of the High Level Group on Aviation Research (HLGAR), Luxembourg: Publications Office of the European Union, ISBN 978-92-79-19724-6, http://ec.europa.eu/transport/air/doc/flightpath2050.pdf (2011). doi: 10.2777/50266

  • Holmes, C.D., Tang, Q., Prather, M.J.: Uncertainties in climate assessment for the case of aviation NO. PNAS, 6, (2011). doi:10.1073/pnas.1101458108

  • IPCC: Aviation and the Global Atmosphere. Cambridge University Press, Cambridge (1999). 373 pp

    Google Scholar 

  • Irvine, E.A., Hoskins, B.J., Shine, K.P., Lunnon, R.W., Frömming, C.: Characterizing North Atlantic weather patterns for climate-optimal aircraft routing. Meteorol. Appl. (2012). doi:10.1002/met.1291

  • Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S., Kern, B.: Development cycle 2 of the modular earth submodel system (MESSy2). Geosci. Model Dev. 3, 717–752 (2010). doi:10.5194/gmd-3-717-2010

    Article  ADS  Google Scholar 

  • Kärcher, B., Möhler, O., DeMott, P.J., Pechtl, S., Yu, F.: Insights into the role of soot aerosols in cirrus cloud formation. Atmos. Chem. Phys. 7, 4203–4227 (2007)

    Article  ADS  Google Scholar 

  • Kärcher, B., Yu, F.: Role of aircraft soot emissions in contrail formation. Geophys. Res. Lett. 36, L01804 (2009). doi:10.1029/2008GL036649

    Article  Google Scholar 

  • Klima, K.: Assessment of a global contrail modeling method and operational strategies for contrail mitigation. Thesis for a Master of Science, Aeronautics and Astronautics at the Massachusetts Institute of Technology (2005)

    Google Scholar 

  • Klug, H.G., Bakan, S., Gayler, V.: Cryoplane—Quantitative Comparison of Contribution to Anthropogenic Greenhouse Effect of Liquid Hydrogen Aircraft Versus Conventional Aircraft. European Geophysical Society, XXI, General Assembly, The Hague, The Netherlands (1996). 22

    Google Scholar 

  • Koch, A., Lührs, B., Dahlmann, K., Linke, F., Grewe, V., Litz, M., Plohr, M., Nagel, B., Gollnick, V., Schumann, U.: Climate impact assessment of varying cruise flight altitudes applying the CATS simulation approach. CEAS 2011 The International Conference of the European Aerospace Societies, p. 12 (2011)

    Google Scholar 

  • Köhler, M.O., Rädel, G., Dessens, O., Shine, K.P., Rogers, H., Wild, O., Pyle, J.A.: Impact of perturbations to nitrogen oxide emissions from global aviation. J. Geophys. Res. 113, D11305 (2008). doi:10.1029/2007JD009140

    Article  ADS  Google Scholar 

  • Linke, F., Langhans, S., Gollnick, V.: Global fuel analysis of intermediate stop operations on long-haul routes. 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, AIAA 2011-6884. Virginia Beach, USA (2011)

    Google Scholar 

  • Lee, D.S., Fahey, D.W., Forster, P.M., Newton, P.J., Wit, R.C.N., Lim, L.L., Owen, B., Sausen, R.: Aviation and global climate change in the 21st century. Atmos. Environ. 43, 3520–3537 (2009). doi:10.1016/j.atmosenv.2009.04.024

    Article  Google Scholar 

  • Lee, D.S., Pitari, G., Grewe, V., Gierens, K., Penner, J.E., Petzold, A., Prather, M.J., Schumann, U., Bais, A., Berntsen, T., et al.: Transport impacts on atmosphere and climate: Aviation. Atmos. Environ. 44, 4678–4734 (2010). doi:10.1016/j.atmosenv.2009.06.005

    Article  ADS  Google Scholar 

  • Mannstein, H., Spichtinger, P., Gierens, K.: How to avoid contrail cirrus. Transp. Res. D 10, 421–426 (2005)

    Google Scholar 

  • Mannstein, H.: Umweltgerechte Flugrouten-Optimierung (UFO)—Endbericht, DLR and Lufthansa, 61 pp. (2011)

    Google Scholar 

  • Mannstein, H., Schumann, U.: Gierens, K., Meilinger, S., Waibel, A.: Verfahren und Vorrichtung zur klimaoptimierten Flugplanung. Submitted Patent, 2012

    Google Scholar 

  • Marquart, S., Sausen, R., Ponater, M., Grewe, V.: Estimate of the climate impact of Cryoplanes. Aerosp. Sci. Technol. 5, 73–84 (2001)

    Article  Google Scholar 

  • Matthes, S.: Climate-optimised flight planning—REACT4C in Innovation for a Sustainable Avation in a Global Environment, Proceedings of the Sixth European Aeronautics Days 2011, IOS Press & European Union (2012) ISBN 978-92--79-22968-8

    Google Scholar 

  • Meerkötter, R., Schumann, U., Minnis, P., Doelling, D.R., Nakajima, T., Tsushima, Y.: Radiative forcing by contrails. Ann. Geophys. 17, 1080–1094 (1999). doi:10.1007/s00585-999-1080-7

    Article  ADS  Google Scholar 

  • Penner, J.E., Chen, Y., Wang, M., Liu, X.: Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing. Atmos. Chem. Phys. 9, 879–896 (2009). doi:10.5194/acp-9-879-2009

    Article  ADS  Google Scholar 

  • Ponater, M., Pechtl, S., Sausen, R., Schumann, U., Hüttig, G.: Potential of the cryoplane technology to reduce aircraft climate impact: A state-of-the-art assessment. Atmos. Environ. 40, 6928–6944 (2006). doi:10.1016/j.atmosenv.2006.06.036

    Article  Google Scholar 

  • Rädel, G., Shine, K.P.: Radiative forcing by persistent contrails and its dependence on cruise altitudes. J. Geophys. Res. 113, D07105 (2008). doi:10.1029/2007JD009117

    Article  ADS  Google Scholar 

  • Sausen, R., Nodorp, D., Land, C.: Towards an optimal flight routing with respect to minimal environmental impact. In: Schumann, U., Wurzel, D. (eds.) Impact of Emissions from Aircraft and Spacecraft upon the Atmosphere. Procedings of an International Science Colloquium, Köln (Cologne), Germany, April 18–20, pp. 473–478 (1994). ISSN 0939-298X

    Google Scholar 

  • Sausen, R., Gierens, K., Ponater, M., Schumann, U.: A diagnostic study of the global distribution of contrails. Part I: Present day climate. Theor. Appl. Clim. 61, 127–141 (1998)

    Article  ADS  Google Scholar 

  • Sausen, R., Schumann, U.: Estimates of the climate response to aircraft CO2 and NOx-emission scenarios. Clim. Change 44, 27–58 (2000)

    Article  Google Scholar 

  • Schumann, U.: On the effect of emissions from aircraft engines on the state of the atmosphere. Ann. Geophys. 12, 365–384 (1994)

    Article  ADS  Google Scholar 

  • Schumann, U.: On conditions for contrail formation from aircraft exhausts. Meteorol. Z. 5, 4–23 (1996)

    Google Scholar 

  • Schumann, U.: Contrail Cirrus. In: Lynch, D.K., Sassen, K., Starr, D.O’C., Stephens, G. (eds.) Cirrus. Oxford University Press, Oxford, pp. 231–255 (2002)

    Google Scholar 

  • Schumann, U.: Formation, properties and climate effects of contrails. Compt. Rend. Phys. 6, 549–565 (2005)

    Article  ADS  Google Scholar 

  • Schumann, U.: A contrail cirrus prediction model. Geosci. Model Dev. 5, 543–580 (2011). doi:10.5194/gmd-5-543-2012

    ADS  Google Scholar 

  • Schumann, U., Graf, K., Mannstein, H.: Potential to reduce the climate impact of aviation by flight level changes. 3rd AIAA Atmospheric and Space Environments Conference AIAA paper 2011–3376, 1–22 (2011)

    Google Scholar 

  • Schumann, U., Mayer, B., Graf, K., Mannstein, H.: A parametric radiative forcing model for contrail cirrus. J. Appl. Meteorol. Clim. 51 (2012) 10.1175/JAMC-D-11-0242.1

    Google Scholar 

  • Schwartz Dallara, E., Kroo, I.M., Waitz, I.: Metric for comparing lifetime averaged climate impact of aircraft. AIAA J. 49, 1600–1613 (2011)

    Article  ADS  Google Scholar 

  • Spichtinger, P., Gierens, K., Leiterer, U., Dier, H.: Ice supersaturation in the tropopause region over Lindenberg. Ger. Meteorol. Z. 12, 143–156 (2003). doi:10.1127/0941-2948/2003/0012-0143

    Article  Google Scholar 

  • Sridhar, B., Chen, N.Y., Ng, H.K., Linke, F.: Design of aircraft trajectories based on trade-offs between emission sources. 9th USA/Europe Air Traffic Management Research and Development Seminar (ATM2011). http://www.atmseminar.org/. (2011)

  • Ström, L., Gierens, K.: First simulations of cryoplane contrails. J. Geophys. Res. 107, 4346 (2002). doi:10.1029/2001JD000838

    Article  Google Scholar 

  • Vazquez-Navarro, M.R.: Life cycle of contrails from a time series of geostationary satellite images, DLR-FB 2010-19, 146 pp (2009)

    Google Scholar 

  • Waitz, I., Townsend, J., Cutcher-Gershenfeld, J., Greitzer, E., Kerebrock, J. (eds.) Aviation and the Environment—Report to the United States Congress, A National Vision Statement, Framework for Goals and Recommended Actions. Massachusetts Institute of Technology, under FAA Cooperative Agreement No. 03-C-NE-MIT, 52 pp (2004)

    Google Scholar 

  • Williams, V., Noland, R.B., Toumi, R.: Reducing the climate change impacts of aviation by restricting cruise altitudes. Transp. Res. D7, 451–464 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrun Matthes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matthes, S. et al. (2012). Climate Optimized Air Transport. In: Schumann, U. (eds) Atmospheric Physics. Research Topics in Aerospace. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30183-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30183-4_44

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30182-7

  • Online ISBN: 978-3-642-30183-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics