Skip to main content

Cloud Resolving Modeling of Contrail Evolution

  • Chapter
  • First Online:

Part of the book series: Research Topics in Aerospace ((RTA))

Abstract

Contrails are ice clouds that form behind aircraft. As a result of burning kerosene in the engines, water vapor is emitted that rapidly freezes and forms ice crystals. If the atmosphere is sufficiently moist and cold, these contrails expand and persist for many hours. This chapter describes the numerical modeling of contrails on a local scale with cloud resolving simulations. Emphasis is put on the description of microphysical modeling. With this methodological approach valuable information on contrail evolution for a multitude of atmospheric and aircraft parameters can be obtained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Burkhardt, U., Kärcher, B.: Global radiative forcing from contrail cirrus. Nature Clim. Change 1, 54–58 (2011). doi:10.1038/NCLIMATE1068

    Article  ADS  Google Scholar 

  • Gierens, K., Kärcher, B., Mannstein, H., Mayer, B.: Aerodynamic contrails: phenomenology and flow physics. J. Atmos. Sci. 66, 217–226 (2009). doi:10.1175/2008JAS2767.1

    Article  ADS  Google Scholar 

  • Huebsch, W.W., Lewellen, D.C.: Sensitivity study on contrail evolution. 36th AIAA Fluid Dynamics Conference and Exhibit, AIAA 2006-3749, vol. 14, 2006

    Google Scholar 

  • Jensen, E.J., Ackermann, A.S., Stevens, D.E., Toon, O.B., Minnis, P.: Spreading and growth of contrails in a sheared environment. J. Geophys. Res. 103(13), 557–513, 567 (1998). doi:10.1029/98JD02594

    Google Scholar 

  • Kärcher, B., Burkhardt, U., Unterstrasser, S., Minnis, P.: Factors controlling contrail cirrus optical depth. Atmos. Chem. Phys. 9, 6229–6254 (2009a). doi:SRef-ID:1680-7324/acp/2009-9-6229

    Article  ADS  Google Scholar 

  • Kärcher, B., Mayer, B., Gierens, K., Burkhardt, U., Mannstein, H., Chatterjee, R.: Aerodynamic contrails: microphysics and optical properties. J. Atmos. Sci. 66, 227–243 (2009b). doi:10.1175/2008JAS2768.1

    Article  ADS  Google Scholar 

  • Lewellen, D.C., Lewellen, W.S.: The effects of aircraft wake dynamics on contrail development. J. Atmos. Sci. 58, 390–406 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  • Mannstein, H., Meyer, R., Wendling, P.: Operational detection of contrails from NOAA-AVHRR data. Int. J. Rem. Sens. 20(8), 1641–1660 (1999)

    Article  Google Scholar 

  • Minnis, P., Young, D.F., Garber, D.P., Nguyen, L., Smith Jr, W.L., Palikonda, R.: Transformation of contrails into cirrus during SUCCESS. Geophys. Res. Lett. 25, 1157–1160 (1998). doi:10.1029/97GL03314

    Article  ADS  Google Scholar 

  • Paoli, R., Hélie, J., Poinsot, T.: Contrail formation in aircraft wakes. J. Fluid Mech. 502, 361–373 (2004). doi:10.1017/S0022112003007808

    Google Scholar 

  • Schumann, U.: On the effect of emissions from aircraft engines on the state of the atmosphere. Ann. Geophys. 12, 365–384 (1994)

    Article  ADS  Google Scholar 

  • Schumann, U.: On conditions for contrail formation from aircraft exhausts. Meteor. Z. 5, 4–23 (1996)

    Google Scholar 

  • Schumann, U.: A contrail cirrus prediction model. Geosci. Model Dev. 5, 543–580 (2012). doi:10.5194/gmd-5-543-2012

    Article  ADS  Google Scholar 

  • Smolarkiewicz, P., Margolin, L.: On forward-in-time differencing for fluids: an Eulerian/semi-Lagrangian non-hydrostatic model for stratified flows. In: Lin, C.A., Laprise, R., Ritchie, H. (eds.) Numerical methods in atmospheric and oceanic modelling: the Andre J. Robert memorial volume, pp. 127–152. Canadian Meteorological and Oceanographical Society, Ottawa (1997)

    Google Scholar 

  • Smolarkiewicz, P., Margolin, L.: MPDATA: a finite-difference solver for geophysical flows. J. Comp. Phys. 140, 459–480 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Sölch, I., Kärcher, B.: A large-eddy model for cirrus clouds with explicit aerosol and ice microphysics and Lagrangian ice particle tracking. Q. J. Royal Meteorol. Soc. 136B, 2074–2093 (2010). doi:10.1002/qj.689

    Article  ADS  Google Scholar 

  • Spichtinger, P., Gierens, K.M.: Modelling of cirrus clouds—Part 1a: Model description and validation. Atmos. Chem. Phys. 9, 685–706 (2009)

    Article  ADS  Google Scholar 

  • Sussmann, R., Gierens, K.: Lidar and numerical studies on the different evolution of vortex pair and secondary wake in young contrails. J. Geophys. Res. 104, 2131–2142 (1999)

    Article  ADS  Google Scholar 

  • Unterstrasser, S., Gierens, K., Spichtinger, P.: The evolution of contrail microphysics in the vortex phase. Meteorol. Z. 17, 145–156 (2008). doi:10.1127/0941-2948/2008/0273

    Article  Google Scholar 

  • Unterstrasser, S., Gierens, K.: Numerical simulations of contrail-to-cirrus transition—Part 2: Impact of initial ice crystal number, radiation, stratification, secondary nucleation and layer depth. Atmos. Chem. Phys. 10, 2037–2051 (2010a). doi:10.5194/acp-10-2037-2010

    Article  ADS  Google Scholar 

  • Unterstrasser, S., Gierens, K.: Numerical simulations of contrail-to-cirrus transition—Part 1: An extensive parametric study. Atmos. Chem. Phys. 10, 2017–2036 (2010b). doi:10.5194/acp-10-2017-2010

    Article  ADS  Google Scholar 

  • Unterstrasser, S., Sölch, I.: Study of contrail microphysics in the vortex phase with a Lagrangian particle tracking model. Atmos. Chem. Phys. 10, 10003–10015 (2010). doi:10.5194/acp-10-10003-2010

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Unterstrasser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Unterstrasser, S., Sölch, I., Gierens, K. (2012). Cloud Resolving Modeling of Contrail Evolution. In: Schumann, U. (eds) Atmospheric Physics. Research Topics in Aerospace. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30183-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30183-4_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30182-7

  • Online ISBN: 978-3-642-30183-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics