Skip to main content

Wind Lidar for Atmospheric Research

  • Chapter
  • First Online:
Book cover Atmospheric Physics

Part of the book series: Research Topics in Aerospace ((RTA))

Abstract

Wind lidars use the optical Doppler effect to measure the atmospheric wind with high spatial and temporal resolution. This offers a wide range of applications from aircraft wake vortex detection and characterization to measurement of turbulent quantities like fluxes to resolving small and mesoscale atmospheric flows, and even global wind profiling from space in the future. Principles of wind lidars including two complementary techniques and applications for atmospheric research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banakh, V.A., Smalikho, I.N., Köpp, F., Werner, C.: Measurements of turbulent energy dissipation rate with a CW Doppler lidar in the atmospheric boundary layer. J. Atmos. Oceanic Technol. 16, 1044–1061 (1999). doi:10.1175/1520-0426(1999)016<1044:MOTEDR>2.0.CO;2

    Article  ADS  Google Scholar 

  • Bastin, S., Drobinski, P., Guenard, V., Caccia, J.-L., Campistron, B., Dabas, A., Delville, P., Reitebuch, O., Werner, C.: On the interaction between sea breeze and summer Mistral at the exit of the Rhone valley. Mon. Weather Rev. 134, 1647–1668 (2006). doi:10.1175/MWR3116.1

    Article  ADS  Google Scholar 

  • Benedetti-Michelangeli, G., Congeduti, F., Fiocco, G.: Measurement of aerosol motion and wind velocity in the lower troposhere by Doppler optical radar. J. Atmos. Sci. 29, 906–910 (1972). doi:10.1175/1520-0469(1972)029<0906:MOAMAW>2.0.CO;2

    Article  ADS  Google Scholar 

  • Bilbro, J., Fichtl, G., Fitzjarrald, D., Krause, M., Lee, R.: Airborne Doppler Lidar Wind Field Measurements. Bull. Am. Meteorol. Soc. 65, 348–359 (1984). doi:10.1175/1520-0477(1984)065<0348:ADLWFM>2.0.CO;2

    Article  ADS  Google Scholar 

  • Bou Karam, D., Flamant, C., Knippertz, P., Reitebuch, O., Pelon, J., Chong, M., Dabas, A.: Dust emissions over Sahel associated with the West African monsoon inter-tropical discontinuity region: a representative case study. Quart. J. Roy. Meteorol. Soc. 134, 621–634 (2008). doi:10.1002/QJ.244

    Article  ADS  Google Scholar 

  • Chanin, M.L., Garnier, A., Hauchecorne, A., Porteneuve, J.: A Doppler lidar for measuring winds in the middle atmosphere. Geophys. Res. Lett. 16, 1273–1276 (1989). doi:10.1029/GL016i011p01273

    Article  ADS  Google Scholar 

  • Drobinski, P., Bastin, S., Guenard, V., Caccia, J.-L., Dabas, A.M., Delville, P., Protat, A., Reitebuch, O., Werner, C.: Summer Mistral at the exit of the Rhône valley. Quart. J. Roy. Meteorol. Soc. 131, 353–375 (2005). doi:10.1256/qj.04.63

    Article  ADS  Google Scholar 

  • Drobinski, P., Bastin, S., Janicot, S., Bock, O., Dabas, A., Delville, P., Reitebuch, O., Sultan, B.: On the late northward propagation of the West African monsoon in summer 2006 in the region of Niger/Mali. J. Geophys. Res. 114, D09108 (2009). doi:10.1029/2008JD011159

    Article  ADS  Google Scholar 

  • Esselborn, M., Wirth, M., Fix, A., Tesche, M., Ehret, G.: Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients. Appl. Optics 47, 346–358 (2008). doi:10.1364/AO.47.000346

    Article  ADS  Google Scholar 

  • Gentry, B.M., Chen, H., Li, S.X.: Wind measurements with 355-nm molecular Doppler lidar. Opt. Lett. 25, 1231–1233 (2000). doi:10.1364/OL.25.001231

    Article  ADS  Google Scholar 

  • Giez, A., Ehret, G., Schwiesow, R., Davis, K.J., Lenschow, D.H.: Water Vapor Flux Measurements from ground-based vertically-pointed water vapor differential absorption and Doppler lidars. J. Atmos. Oceanic Technol. 16, 237–250 (1999). doi:10.1175/1520-0426(1999)016<0237:WVFMFG>2.0.CO;2

    Article  ADS  Google Scholar 

  • Henderson, S.W., Gatt, P., Rees, D., Huffaker, R.M.: Wind lidar. In: Fujii, T., Fukuchi, T. (eds.) Laser Remote Sensing, pp. 469–722. Taylor & Francis Group, London (2005)

    Google Scholar 

  • Hirschberger, M., Ehret, G.: Simulation and high-precision wavelength determination of noisy 2D Fabry–Pérot interferometric rings for direct-detection Doppler lidar and laser spectroscopy. Appl. Phys. B 103, 207–222 (2011). doi:10.1007/s00340-011-4391-9

    Article  ADS  Google Scholar 

  • Huffaker, R.M., Jelalian, A.V., Thomson, J.A.: Laser-Doppler system for detection of aircraft trailing vortices. Proc. IEEE 58, 322–326 (1970). doi:10.1109/PROC.1970.7636

    Article  Google Scholar 

  • Käsler, Y., Rahm, S., Simmet, R., Kühn, M.: Wake measurements of a multi-MW wind turbine with coherent long-range pulsed doppler wind lidar. J. Atmos. Oceanic Technol. 27, 1529–1532 (2010). doi:10.1175/2010JTECHA1483.1

    Article  ADS  Google Scholar 

  • Kiemle, C., Brewer, W.A., Ehret, G., Hardesty, R.M., Fix, A., Senff, C., Wirth, M., Poberaj, G., LeMone, M.A.: Latent heat flux profiles from collocated airborne water vapor and wind lidars during IHOP_2002. J. Atmos. Oceanic Technol. 24, 627–639 (2007). http://dx.doi.org/10.1175/JTECH1997.1

    Article  ADS  Google Scholar 

  • Kiemle, C., Wirth, M., Fix, A., Rahm, S., Corsmeier, U., Di Girolamo, P.: Latent heat flux measurements over complex terrain by airborne water vapour and wind lidars. Quart. J. R. Meteorol. Soc. 137, 190–203 (2011). doi:10.1002/qj.757

    Article  ADS  Google Scholar 

  • Köpp, F., Schwiesow, R.L., Werner, C.: Remote measurements of boundary-layer wind profiles using a CW Doppler lidar. J. Clim. Appl. Meteorol. 23, 148–154 (1984). doi:10.1175/1520-0450(1984)023<0148:RMOBLW>2.0.CO;2

    Article  ADS  Google Scholar 

  • Köpp, F.: Doppler lidar investigation of wake vortex transport between closely spaced parallel runways. AIAA J. 32(4), 805–810 (1994). doi:10.2514/3.12057

    Article  Google Scholar 

  • Köpp, F., Rahm, S., Smalikho, I.: Characterization of aircraft wake vortices by 2-µm pulsed Doppler Lidar. J. Atmos. Oceanic Technol. 21(2), 194–206 (2004). doi:10.1175/1520-0426(2004)021<0194:COAWVB>2.0.CO;2

    Article  ADS  Google Scholar 

  • Korb, C.L., Gentry, B.M., Weng, C.: The edge technique: theory and application to the lidar measurement of atmospheric winds. Appl. Optics 31, 4202–4213 (1992). doi:10.1364/AO.31.004202

    Article  ADS  Google Scholar 

  • Liu, Z., Liu, B., Wu, S., Li, Z., Wang, Z.: High spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements. Opt. Lett. 33, 1485–1487 (2008). doi:10.1364/OL.33.001485

    Article  ADS  Google Scholar 

  • Rahm, S.: Measurement of a wind field with an airborne continuous-wave Doppler lidar. Opt. Lett. 20, 216–218 (1995). doi:10.1364/OL.20.000216

    Article  ADS  Google Scholar 

  • Rahm, S.: Precursor experiment for an active true airspeed sensor. Opt. Lett. 26, 319–321 (2001). doi:10.1364/OL.26.000319

    Article  ADS  Google Scholar 

  • Rahm, S., Smalikho, I., Köpp, F.: Characterization of aircraft wake vortices by airborne coherent Doppler lidar. J. Aircr. 44, 799–805 (2007). doi:10.2514/1.24401

    Article  Google Scholar 

  • Rahm, S., Smalikho, I.: Aircraft wake vortex measurement with airborne coherent Doppler lidar. J. Aircr. 45, 1148–1155 (2008). doi:10.2514/1.32896

    Article  Google Scholar 

  • Reitebuch, O., Werner, C., Leike, I., Delville, P., Flamant, P.H., Cress, A., Engelbart, D.: Experimental validation of wind profiling performed by the airborne 10 μm-heterodyne Doppler lidar WIND. J. Atmos. Oceanic Technol. 18, 1331–1344 (2001). doi:10.1175/1520-0426(2001)018<1331:EVOWPP>2.0.CO;2

    Article  ADS  Google Scholar 

  • Reitebuch, O., Volkert, H., Werner, C., Dabas, A., Delville, P., Drobinski, P., Flamant, P.H., Richard, E.: Determination of air flow across the Alpine ridge by a combination of airborne Doppler lidar, routine radio-sounding and numerical simulation. Quart. J. Roy. Meteorol. Soc. 129, 715–728 (2003). doi:10.1256/qj.02.42

    Article  ADS  Google Scholar 

  • Reitebuch, O., Lemmerz, C., Nagel, E., Paffrath, U., Durand, Y., Endemann, M., Fabre, F., Chaloupy, M.: The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: instrument design and comparison to satellite instrument. J. Atmos. Oceanic Technol. 26, 2501–2515 (2009). doi:10.1175/2009JTECHA1309.1

    Article  ADS  Google Scholar 

  • Schumann, U., Weinzierl, B., Reitebuch, O., Schlager, H., Minikin, A., Forster, C., Baumann, R., Sailer, T., Graf, K., Mannstein, H., et al.: Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010. Atmos. Chem. Phys. 11, 2245–2279 (2011). doi:10.5194/acp-11-2245-2011

    Article  ADS  Google Scholar 

  • Smalikho, I.: Techniques of wind vector estimation from data measured with a scanning coherent Doppler lidar. J. Atmos. Oceanic Technol. 20, 276–291 (2003). doi:10.1175/1520-0426(2003)020<0276:TOWVEF>2.0.CO;2

    Article  ADS  Google Scholar 

  • Smalikho, I., Köpp, F., Rahm, S.: Measurement of atmospheric turbulence by 2-µm Doppler lidar. J. Atmos. Oceanic Technol. 22(11), 1733–1747 (2005). doi:10.1175/JTECH1815.1

    Article  ADS  Google Scholar 

  • Vaughan, J.M., Steinvall, O., Werner, C., Flamant, P.H.: Coherent laser radar in Europe. Proc. IEEE 84, 205–226 (1996). doi:10.1109/5.482229

    Article  Google Scholar 

  • Weissmann, M., Braun, F., Gantner, L., Mayr, G., Rahm, S., Reitebuch, O.: The Alpine mountain-plain circulation: airborne Doppler lidar measurements and numerical simulations. Mon. Weather Rev. 133, 3095–3109 (2005a). http://dx.doi.org/10.1175/MWR3012.1

    Article  ADS  Google Scholar 

  • Weissmann, M., Busen, R., Dörnbrack, A., Rahm, S., Reitebuch, O.: Targeted observations with an airborne wind lidar. J. Atmos. Oceanic Technol. 22, 1706–1719 (2005b). http://dx.doi.org/10.1175/JTECH1801.1

    Article  ADS  Google Scholar 

  • Weissmann, M., Cardinali, C.: Impact of airborne Doppler lidar observations on ECMWF forecasts. Quart. J. R. Meteorol. Soc. 133, 107–116 (2007). doi:10.1002/qj.16

    Article  ADS  Google Scholar 

  • Weissmann, M., Langland, R.H., Cardinali, C., Rahm, S.: Influence of airborne Doppler wind lidar profiles near typhoon Sinlaku on ECMWF and NOGAPS forecasts. Quart. J. R. Meteorol. Soc. 138, 118–130 (2012). doi:10.1002/qj.896

    Article  ADS  Google Scholar 

  • Werner, C., Flamant, P.H., Reitebuch, O., Köpp, F., Streicher, J., Rahm, S., Nagel, E., Klier, M., Herrmann, H., Loth, C., et al.: Wind infrared Doppler lidar instrument. Opt. Eng. 40, 115–125 (2001). doi:10.1117/1.1335530

    Article  ADS  Google Scholar 

  • Werner, C.: Doppler wind lidar. In: Weitkamp, C. (ed.) Lidar—Range-Resolved Optical Remote Sensing of the Atmosphere, pp. 325–354. Springer, New York (2004)

    Google Scholar 

  • Witschas, B., Vieitez, M.O., van Duijn, E.-J., Reitebuch, O., van de Water, W., Ubachs, W.: Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air. Appl. Optics 49, 4217–4227 (2010). doi:10.1364/AO.49.004217

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Reitebuch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reitebuch, O. (2012). Wind Lidar for Atmospheric Research. In: Schumann, U. (eds) Atmospheric Physics. Research Topics in Aerospace. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30183-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30183-4_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30182-7

  • Online ISBN: 978-3-642-30183-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics