Skip to main content

Training der Selbstkontrolle der langsamen kortikalen Potenziale

  • Chapter
Praxisbuch Biofeedback und Neurofeedback
  • 3806 Accesses

Zusammenfassung

Langsame kortikale Potenziale (Slow Cortical Potentials, auch SCPs genannt) sind ereigniskorrelierte Potenziale und können nicht mit den bereits beschriebenen Frequenzen des EEG (Kap. 3) verglichen werden. Sie haben keine Schwingungen im herkömmlichen Sinn, sondern sie bestehen aus lang anhaltenden Verschiebungen des gesamten EEG-Spektrums in eine elektrisch negative oder positive Richtung. So etwas geschieht, wenn entweder viele Nervenzellverbände gleichzeitig angeregt werden und sich dadurch ihre Bereitschaft erhöht, zu feuern, oder wenn die Aktivierung zurückgefahren wird und/oder bereitgestellte Energie verbraucht wird.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Weiterführende Literatur

  • Arns M et al. (2009) Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a metaanalysis. Clinical EEG and Neuroscience 40:180–189

    Article  PubMed  Google Scholar 

  • Andrews-Hanna JR et al. (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56:924–935

    Article  PubMed  CAS  Google Scholar 

  • Assaf M et al. (2010) Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage 53:247–256

    Article  PubMed  Google Scholar 

  • Birbaumer N et al. (1990) Slow potentials of the cerebral cortex and behavior. Physiological Reviews 70:1–41

    PubMed  CAS  Google Scholar 

  • Birbaumer N, Schmidt RF (2006) Biologische Psychologie, 6. Aufl. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Broyd SJ et al. (2009) Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 33:279–296

    Article  PubMed  Google Scholar 

  • Castellanos FX et al. (2005) Varieties of attention-deficit/hyperactivity disorder-related intraindividual variability. Biol Psychiatry 57:1416–1423

    Article  PubMed  Google Scholar 

  • Castellanos FX et al. (2008) Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiatry 63:332–337

    Article  PubMed  Google Scholar 

  • Cole M et al. (2010) Identifying the brain‘s most globally connected regions. NeuroImage 49:3132–3148

    Article  PubMed  Google Scholar 

  • Döpfner M et al. (2008) DISYPS-11. Diagnostisches System für psychische Störungen nach ICD-10 und DSM-IV für Kinder und Jugendliche – II. Hogrefe, Göttingen; doi: 10.1026//0012-1924.46.3.165

    Google Scholar 

  • Fox M et al. (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci 102(27):9673–9678

    Article  PubMed  CAS  Google Scholar 

  • Gani C et al. (2008) Long term effects after feedback of slow cortical potentials and of theta-beta-amplitudes in children with attention-deficit/hyperactivity disorder (ADHD). International Journal of Bioelectromagnetism 10(4):209–232

    Google Scholar 

  • Gevensleben H et al. (2009) Distinct EEG effects related to neurofeedback training in children with ADHD: A randomized controlled trial. International Journal of Psychophysiology 74:149–157

    Article  PubMed  Google Scholar 

  • Gevensleben H et al. (2009) Is neurofeedback an efficacious treatment for ADHD? A randomised controlled clinical trial. Journal of Child Psychology and Psychiatry 50:780–789

    Article  PubMed  Google Scholar 

  • Gevensleben H et al. (2010) Neurofeedback-Training bei Kindern mit Aufmerksamkeitsdefizit-/ Hyperaktivitätsstörung (ADHS) Effekte auf Verhaltens – und neurophysiologischer Ebene. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie 38(6):409–420

    Article  PubMed  Google Scholar 

  • Gevensleben H et al. (2010) Neurofeedback training in children with ADHD: 6-month follow-up of a randomised controlled trial. European Child and Adolescent Psychiatry 19:715–724

    Article  PubMed  Google Scholar 

  • Greicius MD et al. (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19:72–78

    Article  PubMed  Google Scholar 

  • He B, Raichle ME (2009) The fMRI signal, slow cortical potential and consciousness. Trends Cogn Sci 13:302–309

    Article  PubMed  Google Scholar 

  • He B et al. (2008) Electrophysiological correlates of the brain’s intrinsic large-scale functional architecture. Proc Natl Acad Sci 105(41):16039–16044

    Article  PubMed  CAS  Google Scholar 

  • Heinrich H et al. (2004) Training of slow cortical potentials in attention-deficit/hyperactivity disorder: Evidence for positive behavioral and neurophysiological effects. Biological Psychiatry 55:772–775

    Article  PubMed  Google Scholar 

  • Helps S et al. (2008) Very low frequency EEG oscillations and the resting brain in young adults: a preliminary study of localisation, stability and association with symptoms of inattention. J Neural Transm 115: 279–285

    Article  PubMed  CAS  Google Scholar 

  • Helps S et al. (2010) Altered spontaneous low frequency brain activity in attention deficit/hyperactivity disorder. Brain 13:134–143

    Google Scholar 

  • Holtmann M et al. (2004) Neurofeedback in der Behandlung der Aufmerksamkeitsdefizit-Hyperaktivitätsstörung (ADHS) im Kindes-und Jugendalter. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie 32:187–200

    Article  PubMed  Google Scholar 

  • Klingberg et al. (2002) Training of working memory in children with ADHD. Journal of Clinical and Experimental Neuropsychology Vol 24, Issue 6

    Google Scholar 

  • Kotchoubey B et al. (2001) Modification of slow cortical potentials in patients with refractory epilepsy: A controlled outcome study. Epilepsia 42:406–416

    Article  PubMed  CAS  Google Scholar 

  • Leins U et al. (2006) Neurofeedback der langsamen kortikalen Potenziale und der Theta/Beta Aktivität für Kinder mit einer ADHS: ein kontrollierter Vergleich. Prax Kinderpsychol Kinderpsychiat 55:384–407

    Google Scholar 

  • Leins U et al. (2007) Neurofeedback for children with ADHD: A comparison of SCP- and theta/beta-protocols. Appl Psychophysiol Biofeedback 32:73–88

    Article  PubMed  Google Scholar 

  • Mayer K et al. (2012) Neurofeedback for adult attention-deficit/hyperactivity disorder: Investigation of slow cortical potential Neurofeedback – preliminary results. Journal of Neurotherapy 16:1, 37–45

    Article  Google Scholar 

  • Meichenbaum D, Goodman J (1971) Training impulsive children to talk to themselves: a means of developing self-control. Journal Abnormal Psychol 77:115–126

    Article  CAS  Google Scholar 

  • Monto S et al. (2008) Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans. The Journal of Neuroscience 28(33):8268–8272

    Article  PubMed  CAS  Google Scholar 

  • Schomer DL, da Silva FHL (2011) Niedermeyer‘s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 6th ed. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Northoff G et al. (2010) The brain and its resting state activity – Experimental and methodological implications. Progress in Neurobiology 92:593–600

    Article  PubMed  Google Scholar 

  • Otti A et al. (2010) I know the pain you feel – how the human brain’s default mode predicts our resonance to another’s suffering. Neuroscience 169:143–148

    Article  PubMed  CAS  Google Scholar 

  • Otti A et al. (2012) Default Mode Netzwerk des Gehirns. Nervenarzt 83:16–24

    Article  PubMed  CAS  Google Scholar 

  • Palva JM (vorab online veröffentlicht) Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation-level-dependent signals, and psychophysical time series. http://www.researchgate.net/publication/221687749_Infra-slow_fluctuations_in_electrophysiological_recordings_blood-oxygenation-level-dependent_signals_and_psychophysical_time_series. Abgerufen am 28.02.2012

  • Raichle ME (2009) A paradigm shift in functional brain imaging. J Neurosci 29(41):12729–12734

    Article  PubMed  CAS  Google Scholar 

  • Raichle ME (2010) Two views of brain function. Trends in Cognitive Sciences 14(4):180–190

    Article  PubMed  Google Scholar 

  • Raichle ME, Mintun MA (2006) Brain work and brain imaging. Ann Rev Neurosci 29:449–476

    Article  PubMed  CAS  Google Scholar 

  • Raichle ME et al. (2001) A default mode of brain function. Proc Natl Acad Sci 98:676–682

    Article  PubMed  CAS  Google Scholar 

  • Rothenberger A (2009) Brain oscillations forever – neurophysiology in future research of child psychiatric problems. J Child Psychol Psychiatry 50:79–86

    Article  PubMed  Google Scholar 

  • Shelien Y et al. (2009) The default mode network and self-referential processes in depression. Proc Natl Acad Sci 106:1942–1947

    Article  Google Scholar 

  • Sherlin L et al. (2010) A position paper on neurofeedback for the treatment of ADHD. Journal of Neurotherapy 14:2, 66–78

    Google Scholar 

  • Sonuga-Barke EJ, Castellanos FX (2007) Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci Biobehav Rev 31:977–986

    Article  PubMed  Google Scholar 

  • Strehl U et al. (2006) Self-regulation of slow cortical potentials: A new treatment for children with attention-deficit/hyperactivity disorder. Pediatrics 118:1530–1540

    Article  Google Scholar 

  • Sterman M (2004) What’s it all about Alpha? 35th Anniversary Meeting of the Association for Applied Psychophysiology and Biofeedback. Colorado Springs, Colorado

    Google Scholar 

  • Universität Trier Fachbereich I – Psychologie Psychophysiologische Methodik (2003) Ereigniskorrelierte Potentiale. http://www.neurolabor.de/ereigniskorreliert.pdf. Abgerufen am 17.07.2012

  • Wangler S et al. (2011) Neurofeedback in children with ADHD: specific event-related potential findings of a randomized controlled trial. Clin EEG Neurosci 22(5):942–50

    Google Scholar 

  • Zhang D, Raichle ME (2010) Disease and the brain’s dark energy. Nat Rev Neurol 6, 15–28 doi:10.1038/nrneurol.198

    Article  PubMed  Google Scholar 

  • Zang YF et al. (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29:83–91

    Article  PubMed  Google Scholar 

  • Zschocke S (2002) Klinische Elektroenzephalographie. Springer, Heidelberg New York Tokio

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schneider, E., Strauß, G. (2013). Training der Selbstkontrolle der langsamen kortikalen Potenziale. In: Praxisbuch Biofeedback und Neurofeedback. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30179-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30179-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30178-0

  • Online ISBN: 978-3-642-30179-7

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics