Advertisement

A Novel Genetic Algorithm Based Method for Efficient QCA Circuit Design

  • Mohsen Kamrani
  • Hossein Khademolhosseini
  • Arman Roohi
  • Poornik Aloustanimirmahalleh
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 166)

Abstract

In this paper we have proposed an efficient method based on Genetic Algorithms (GAs) to design quantum cellular automata (QCA) circuits with minimum possible number of gates. The basic gates used to design these circuits are 2-input and 3-input NAND gates in addition to inverter gate. Due to use of these two types of NAND gates and their contradictory effects, a new fitness function has been defined. In addition, in this method we have used a type of mutation operator that can significantly help the GA to avoid local optima. The results show that the proposed approach is very efficient in deriving NAND based QCA designs.

Keywords

Genetic Algorithms QCA NAND gate Hardware Reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonyadi, M.R., et al.: Logic Optimization for Majority Gate-Based Nanoelectronic Circuits Based on Genetic Algorithm. In: International Conference on Electrical Engineering, ICEE 2007, pp. 1–5 (2007)Google Scholar
  2. 2.
    Zhi, H., Qishan, Z., Haruehanroengra, S., Wei, W.: Logic optimization for majority gate-based nanoelectronic circuits. In: Proceedings of 2006 IEEE International Symposium on Circuits and Systems, ISCAS 2006, p. 4, p. 1310 (2006)Google Scholar
  3. 3.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor (1975)Google Scholar
  4. 4.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company Inc., Massachusetts (1989)zbMATHGoogle Scholar
  5. 5.
    Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)Google Scholar
  6. 6.
    Chambers, L.D.: Practical Handbook of Genetic Algorithms: New Frontiers, 1st edn. CRC Press, Inc., Boca Raton (1995)CrossRefzbMATHGoogle Scholar
  7. 7.
    Chambers, L.D.: Practical Handbook of Genetic Algorithms: Complex coding system, 1st edn. CRC Press, Inc., Boca Raton (1998)CrossRefGoogle Scholar
  8. 8.
    Chambers, L.D.: Practical Handbook of Genetic Algorithms: Applications, 2nd edn. CRC Press, Inc., Boca Raton (2000)CrossRefzbMATHGoogle Scholar
  9. 9.
    Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49–57 (1993)CrossRefGoogle Scholar
  10. 10.
    Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. Journal of Applied Physics 75(3), 1818–1825 (1994)CrossRefGoogle Scholar
  11. 11.
    Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proceedings of the IEEE 85(4), 541–557 (1997)CrossRefGoogle Scholar
  12. 12.
    Navi, K., Sayedsalehi, S., Farazkish, R., Rahimi Azghadi, M.: Five-input majority gate, a new device for quantum-dot cellular automata. Journal of Computational and Theoretical Nanoscience 7, 1546–1553 (2010)CrossRefGoogle Scholar
  13. 13.
    Sayedsalehi, S., Moaiyeri, M.H., Navi, K.: Novel Efficient Adder Circuits for Quantum-Dot Cellular Automata. To be Published in Journal of Computational and Theoretical Nanoscience (2011)Google Scholar
  14. 14.
    Cho, H., Swartzlander, E.E.: Adder and multiplier design in quantum-dot cellular automata. IEEE Transactions on Computers 58(6), 721–727 (2009)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Navi, K., Farazkish, R., Sayedsalehi, S., Rahimi Azghadi, M.: A new quantum-dot cellular automata full-adder. Microelectronics Journal 41, 820–826 (2010)CrossRefGoogle Scholar
  16. 16.
    Roohi, A., Kamrani, M., Sayedsalehi, S., Navi, K.: A Combinational Logic Optimization for Majority Gate-Based Nanoelectronic Circuits Based on GA. In: International Semiconductor Device Research Symposium, USA (2011)Google Scholar
  17. 17.
  18. 18.
    Roohi, A., Kamrani, M., Khademolhosseini, H., Sayedsalehi, S.: A Novel Symmetric Design for 5-input Majority Gate in Quantum Cellular Automata. In: International Conference on NanoScience, Engineering and Technology, ICONSET 2011 (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Mohsen Kamrani
    • 1
  • Hossein Khademolhosseini
    • 2
  • Arman Roohi
    • 2
  • Poornik Aloustanimirmahalleh
    • 3
  1. 1.Department of Computer EngineeringSharif University of TechnologyTehranIran
  2. 2.Department of Computer Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  3. 3.Department of Electrical and Computer EngineeringCurtin University of TechnologyPerthAustralia

Personalised recommendations