Skip to main content

Physical Random Number Generations and Photonic Integrated Circuits for Chaotic Generators

  • Chapter
  • First Online:
Semiconductor Lasers

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 111))

  • 3152 Accesses

Abstract

Another important application for optical secure communications is high-speed physical random number generations. Using outputs from chaotic semiconductor lasers, ultra-high-speed random number generations higher than several tens to hundreds GHz can be attained. The subjects related to the generations of high quality random bit sequences are studied. For the implementation of optical communications and random number generations, photonic integrated circuits as chaotic generators are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Argyris A, Hamacher M, Chlouverakis KE, Bogris A, Syvridis D (2008) Photonic integrated device for chaos applications in communications. Phys Rev Lett 100: 14101-1–4

    Google Scholar 

  • Argyris A, Grivas E, Hamacher M, Bogris A, Syvridis D (2010a) Chaos-on-a-chip secures data transmission in optical fiber links. Opt Express 18:5188–5198

    Google Scholar 

  • Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D (2010b) Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit. Opt Express 18:18763–18768

    Google Scholar 

  • Bauer S, Brox O, Kreissl J, Sartorius B, Radziunas M, Sieber J, Wünsche HJ, Henneberger F (2004) Nonlinear dynamics of semiconductor lasers with active optical feedback. Phys Rev E 69:016206-1–10

    Google Scholar 

  • Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M (2003) A high-speed oscillator-based truly random number source for cryptographic applications on a smart card IC. IEEE Trans Comput 52:403–409

    Google Scholar 

  • Gisin N, Ribordy G, Tittel W, Zbinden H (2002) Quantum cryptography. Rev Mod Phys 74:145–195

    Google Scholar 

  • Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A (2011) Fast nondeterministic random-bit generation using on-chip chaos lasers. Phys Rev A 83:031803(R)-1–4

    Google Scholar 

  • Hirano K, Amano K, Uchida A, Naito S, Inoue M, Yoshimori S, Yoshimura K, Davis P (2009) Characteristics of fast physical random bit generation using chaotic semiconductor lasers. IEEE J Quantum Electron 45:1367–1378

    Google Scholar 

  • Hirano K, Yamazaki T, Morikatsu S, Okumura H, Aida H, Uchida A, Yoshimori S, Yoshimura K, Harayama T, Davis P (2010) Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. Opt Express 18:5512–5524

    Google Scholar 

  • Honjo T, Uchida A, Amano K, Hirano K, Someya H, Okumura H, Yoshimura K, Davis P, Tokura Y (2009) Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers. Opt Express 17:9053–9061

    Google Scholar 

  • Huybrechts K, Morthier G, Baets R (2008) Fast all-optical flip-flop based on a single distributed feedback laser diode. Opt Express 16:11405–11410

    Article  ADS  Google Scholar 

  • Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M (2010) An optical ultrafast random bit generator. Nat Photon 4:58–61

    Google Scholar 

  • Kawaguchi H (1994) Bistabilities and nonlinearities in laser diodes. Artech House, London

    Google Scholar 

  • Knuth D (1996) The art of computer programming.Seminumerical algorithms: vol 2, 3rd edn. Addison-Wesley, Boston

    Google Scholar 

  • Li P, Wang YC, Zhang JZ (2010) All-optical fast random number generator. Opt Express 18:20360–20369

    Google Scholar 

  • Li X, Cohen AB, Murphy TE, Roy R (2011) Scalable parallel physical random number generator based on a superluminescent LED. Opt Lett 36:1020–1022

    Google Scholar 

  • Marsaglia G, Zaman A, Tsang WW (1990) Toward a universal random number generator. Stat Probab Lett 9:35-39

    Google Scholar 

  • Marsaglia G (1995) Diehard: a battery of tests of randomness. http://www.stat.fsu.edu/pub/diehard/

  • Qi B, Chi YM, Lo HK, Qian L (2010) High-speed quantum random number generation by measuring phase noise of a single-mode laser. Opt Lett 35:312–314

    Google Scholar 

  • Reidler I, Aviad Y, Rosenbluh M, Kanter, I (2009) Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys Rev Lett 103:024102-1–4

    Google Scholar 

  • Rontani D, Locquet A, Sciamanna M, Citrin DS (2007) Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback. Opt Lett 32:2960–2962

    Google Scholar 

  • Rontani D, Locquet A, Sciamanna M, Citrin DS, Ortin S (2009) Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view. IEEE J Quantum Electron 45:879–891

    Google Scholar 

  • Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M (2001) A statistical test suite for random and pseudorandom number generators for cryptographic applications. Nat Inst Stand Technol (Special Publication) 800–22

    Google Scholar 

  • Stinson DR (1995) Cryptography: theory and practice. CRC Press, Boca Raton

    Google Scholar 

  • Symul T, Assad SM, Lamb PK (2011) Real time demonstration of high bitrate quantum random number generation with coherent laser light. Appl Phys Lett 98:231103-1–3

    Google Scholar 

  • Tronciu VZ, Mirasso CR, Colet P, Hamacher M, Benedetti M, Vercesi V, Annovazzi-Lodi V (2010) Chaos generation and synchronization using an integrated source with an air gap. IEEE J Quantum Electron 46:1840–1846

    Google Scholar 

  • Uchida A (2011) Review on ultra-fast physical number generators based on optical random phenomena. Rev Laser Eng 39:508–514 (in Japanese)

    Google Scholar 

  • Uchida A (2012) Optical communication with chaotic lasers: applications of nonlinear dynamics and synchronization. Wiley, Berlin

    Google Scholar 

  • Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P (2008) Fast physical random bit generation with chaotic semiconductor lasers. Nat Photon 2:728–732

    Google Scholar 

  • Wang Y, Li P, Zhang J (2010) Fast random bit generation in optical domain with ultrawide bandwidth chaotic laser. IEEE Photon Technol Lett 22:1680–1682

    Google Scholar 

  • Williams CRS, Salevan JC, Li X, Roy R, Murphy TE (2010) Fast physical random number generator using amplified spontaneous emission. Opt Express 23:23584–23597

    Google Scholar 

  • Wu JG, Xia GQ, Wu ZM (2009) Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback. Opt Express 17:20124–20133

    Google Scholar 

  • Wu JG, Xia GQ, Tang X, Lin XD, Deng T, Fan L, Wu ZM (2010) Time delay signature concealment of optical feedback induced chaos in an external cavity semiconductor laser. Opt Express 18:6661–6666

    Google Scholar 

  • Wu JG, Wu ZM, Tang X, Lin XD, Deng T, Xia GQ, Feng GY (2011) Simultaneous generation of two sets of time delay signature eliminated chaotic signals by using mutually coupled semiconductor lasers. IEEE Photon Technol Lett 23:759–781

    Google Scholar 

  • Wünsche HJ, Bauer S, Kreissl K, Ushakov O, Korneyev N, Henneberger F, Wille E, Erzgräber H, Peil M, Elsäßer W, Fischer I (2005) Synchronization of delay-coupled oscillators: a study of semiconductor lasers. Phys Rev Lett 94:163901-1–4

    Google Scholar 

  • Yousefi Y, Barbarin Y, Beri S, Bente EAJM, Smit MK, Nötzel R, Lenstra D (2007) New role for nonlinear dynamics and chaos in integrated semiconductor laser technology. Phys Rev Lett 98:044101-1–4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Ohtsubo .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ohtsubo, J. (2013). Physical Random Number Generations and Photonic Integrated Circuits for Chaotic Generators. In: Semiconductor Lasers. Springer Series in Optical Sciences, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30147-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30147-6_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30146-9

  • Online ISBN: 978-3-642-30147-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics