Skip to main content

Complex Networks from Evolutionary Preferential Attachment

  • Chapter
  • First Online:
  • 912 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter we analyze the growth and formation of complex networks by coupling the network formation rules to the dynamical states of the elements of the system. As we have already mentioned, some mechanisms have been proposed for constructing complex scale-free networks similar to those observed in natural, social and technological systems from purely topological arguments (for instance, using a preferential attachment rule or any other rule available in the literature). As those works do not include information on the specific function or origin of the network, it is very difficult to discuss the origin of the observed networks on the basis of those models, hence motivating the question we are going to address. The fact that the existing approaches consider separately the two directions of the feedback loop between the function and form of a complex system demands for a new mechanism where the network grows coupled to the dynamical features of its components. Our aim here is to introduce for the first time an attempt in this direction, by linking the growth of the network to the dynamics taking place among its nodes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Newman, SIAM Review 45, 167 (2003).

    Google Scholar 

  2. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang, Phys. Rep. 424, 175 (2006).

    Google Scholar 

  3. G. Bianconi and A. L. Barabási, Europhys. Lett. 54, 436 (2001).

    Google Scholar 

  4. G. Caldarelli, A. Capocci, P. D. L. Rios, and M. A. M. noz, Phys. Rev. Lett. 89, 258702 (2002).

    Google Scholar 

  5. A. Rapoport and A. M. Chammah, Prisoner’s Dilemma. (Univ. of Michigan Press, Ann Arbor, 1965).

    Google Scholar 

  6. K. Lindgren and M. Nordahl, Physica D 75, 292 (1994).

    Google Scholar 

  7. M. A. Nowak and R. M. May, Nature 359, 826 (1992).

    Google Scholar 

  8. F. C. Santos and J. M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005).

    Google Scholar 

  9. H. Gintis, Game theory evolving. (Princeton University Press, Princeton, NJ, 2000).

    Google Scholar 

  10. C. Hauert and M. Doebeli, Nature 428, 643 (2004).

    Google Scholar 

  11. F. C. Santos, F. J. Rodrigues, and J. M. Pacheco, Proc. Biol. Sci. 273, 51 (2006).

    Google Scholar 

  12. J. Hofbauer and K. Sigmund, Evolutionary games and population dy- namics. (Cambridge University Press, Cambridge, UK, 1998).

    Google Scholar 

  13. J. Hofbauer and K. Sigmund, Bull. Am. Math. Soc. 40, 479 (2003).

    Google Scholar 

  14. J. Gómez-Gardeñes, M. Campillo, L. M. Florí­a, and Y. Moreno, Phys. Rev. Lett. 98, 108103 (2007).

    Google Scholar 

  15. M. Nowak, A. Sasaki, C. Taylor, and D. Fudenberg, Nature 428, 646 (2004).

    Google Scholar 

  16. M. Nowak, Science 314, 1560 (2006).

    Google Scholar 

  17. E. Lieberman, C. Hauert, and M. A. Nowak, Nature 433, 312 (2005).

    Google Scholar 

  18. A. Barabási and R. Albert, Science 286, 509 (1999).

    Google Scholar 

  19. F. C. Santos and J. M. Pacheco, J. Evol. Biol. 19, 726 (2006).

    Google Scholar 

  20. P. Erdos and A. Renyi, Publicationes Mathematicae Debrecen 6, 290 (1959).

    Google Scholar 

  21. F. C. Santos, J. M. Pacheco, and T. Lenaerts, Proc. Natl. Acad. Sci. USA 103, 3490 (2006).

    Google Scholar 

  22. S. Assenza, J. Gómez-Gardeñes, and V. Latora, Phys. Rev. E 78, 017101 (2008).

    Google Scholar 

  23. A. Pusch, S. Weber, and M. Porto, Phys. Rev. E 77, 036120 (2008).

    Google Scholar 

  24. L. M. Florí­a, C. Gracia-Lázaro, J. Gómez-Gardeñes, and Y. Moreno, Phys. Rev. E 79, 026106 (2009).

    Google Scholar 

  25. R. Axelrod, The complexity of cooperation: agent-based models of com- petition and collaboration. (Princeton University Press., Princeton, NJ, 1997).

    Google Scholar 

  26. M. Nowak, Evolutionary dynamics: exploring the equations of life. (Harvard University Press., Cambridge, MA, 2006).

    Google Scholar 

  27. M. Nowak and K. Sigmund, Games on Grids, in: The Geometry of Ecological Interactions. (Cambridge University Press, Cambridge, UK, 2000).

    Google Scholar 

  28. R. Axelrod and W. Hamilton, Science 211, 1390 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Poncela Casasnovas, J. (2012). Complex Networks from Evolutionary Preferential Attachment. In: Evolutionary Games in Complex Topologies. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30117-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30117-9_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30116-2

  • Online ISBN: 978-3-642-30117-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics