Skip to main content

Introduction

  • Chapter
  • First Online:
Photomodulated Optical Reflectance

Part of the book series: Springer Theses ((Springer Theses))

  • 383 Accesses

Abstract

At first sight, it may seem surprising that carrier profiling, i.e. electrical characterization, can be performed with an optical measurement technique. We will, however, show in this work that these two research fields are linked to each other. This chapter therefore briefly introduces both research domains. It is mostly a compilation of results and insights that have been gathered by colleagues and other researchers who I would like to deeply acknowledge, since their direct and indirect input has been essential to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Calculated active doping concentrations much higher than the solubility limit can then be reached

  2. 2.

    The name of the technique, “RsL”, actually stands for Rs and Leakage measurement since it has been shown that the technique is able to measure leakage current simultaneously with sheet resistance. We will, however, not use or discuss that capability.

  3. 3.

    The ellipsometric parameters are the amplitude \(\tan \psi _e\) and phase \(\Delta _e\) of the ratio of the parallel component \(E_{rp}/E_{ip}\) to the perpendicular component \(E_{rs}/E_{is}\) of the reflection coefficient. The parallel and perpendicular directions refer here to the plane of incidence

References

  1. International technology roadmap for semiconductors. International Technology Roadmap for Semiconductors, http://www.itrs.net.http://www.itrs.net/reports.html

  2. S. Severi, Ultra Shallow Junctions Formation for the Ultimate Scaling Limit: Physics, Fabrication and Characterization. PhD thesis, Katholieke Universiteit Leuven, 2006

    Google Scholar 

  3. D.K. Schroder, Semiconductor Material and Device Characterization, Chap. 9 (Wiley-IEEE Press, New York, 2006)

    Google Scholar 

  4. W. Vandervorst, T. Janssens, B. Brijs, T. Conard, C. Huyghebaert, J. Fruhauf, A. Bergmaier, G. Dollinger, T. Buyuklimanli, J.A. VandenBerg, K. Kimura, Errors in near-surface and interfacial profiling of boron and arsenic. Appl. Surf. Sci. 231–232, 618–631 (2004)

    Article  Google Scholar 

  5. W. Vandervorst, Semiconductor profiling with sub-nm resolution: challenges and solutions. Appl. Surf. Sci. 255(4), 805–812 (2008)

    Article  ADS  Google Scholar 

  6. T. Clarysse, F. Dortu, D. Vanhaeren, I. Hoflijk, L. Geenen, T. Janssens, R. Loo, W. Vandervorst, B.J. Pawlak, V. Ouzeaud, C. Defranoux, V.N. Faifer, M.I. Current, Accurate electrical activation characterization of cmos ultra-shallow profiles. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 114–115, 166–173 (2004)

    Google Scholar 

  7. T. Clarysse, W. Vandervorst, M. Bakshi, L. Nicolaides, A. Salnik, J. Opsal, Towards nondestructive carrier depth profiling. J. Vac. Sci. Technol. B 24(3), 1139–1146 (2006)

    Article  Google Scholar 

  8. D.H. Petersen, O. Hansen, R. Lin, P.F. Nielsen, Micro-four-point probe hall effect measurement method. J. Appl. Phys. 104(1), 013710-1-10 (2008)

    Article  ADS  Google Scholar 

  9. T. Clarysse, J. Bogdanowicz, J. Goossens, A. Moussa, E. Rosseel, W. Vandervorst, D.H. Petersen, R. Lin, P.F. Nielsen, O. Hansen, G. Merklin, N.S. Nennett, N.E.B. Cowern, On the analysis of the activation mechanisms of sub-melt laser anneals. Mater. Sci. Eng. B 154–155, 24–30 (2008)

    Article  Google Scholar 

  10. D.B.M. Klaassen, A unified mobility model for device simulation. 1. model-equations and concentration-dependence. Solid-State Electron. 35(7), 953–959 (1992)

    Article  ADS  Google Scholar 

  11. American Society for Testing and Materials, Annual Book of ASTM Standards (American Society for Testing and Materials, Philadelphia, 1987)

    Google Scholar 

  12. P. Eyben, Scanning Spreading Resistance Micorscopy: High resolution two-dimensional carrier profiling of semiconductor structures. Ph.D. thesis, KUleuven, 2004

    Google Scholar 

  13. J. Mody, R. Duffy, P. Eyben, J. Goossens, A. Moussa, W. Polspoel, B. Berghmans, M.J.H. van Dal, B.J. Pawlak, M. Kaiser, R.G.R. Weemaes, W. Vandervorst, Experimental studies of dose retention and activation in fin field-effect-transistor-based structures (vol 28, pg c1h5, 2010). J. Vac. Sci. Technol. B 28(3), 648–648 (2010)

    Article  Google Scholar 

  14. T. Clarysse, G. Brammertz, D. Vanhaeren, P. Eyben, J. Goossens, F. Clemente, M. Meuris, W. Vandervorst, R. Srnanek, R. Kinder, B. Sciana, D. Radziewicz, Z.Q. Li, Accurate carrier profiling of n-type gaas junctions. Mater. Sci. Semicond. Process. 11(5–6), 259–266 (2008)

    Article  Google Scholar 

  15. P. De Wolf, T. Clarysse, W. Vandervorst, Quantification of nanospreading resistance profiling data, vol. 16, pp. 320–326. AVS, 1998, http://link.aip.org/link/?JVB/16/320/1

  16. D. Alvarez, J. Hartwich, M. Fouchier, P. Eyben, W. Vandervorst, Sub-5-nm-spatial resolution in scanning spreading resistance microscopy using full-diamond tips. Appl. Phys. Lett. 82(11), 1724–1726 (2003)

    Article  ADS  Google Scholar 

  17. P. Eyben, S. Denis, T. Clarysse, W. Vandervorst, Progress towards a physical contact model for scanning spreading resistance microscopy. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 102(1–3), 132–137 (2003)

    Google Scholar 

  18. D.H. Petersen, O. Hansen, T.M. Hansen, P. Boggild, R. Lin, D. Kjaer, P.F. Nielsen, T. Clarysse, W. Vandervorst, E. Rosseel, N.S. Bennett, N.E.B. Cowern, Review of electrical characterization of ultra-shallow junctions with micro four-point probes. J. Vac. Sci. Technol. B 28(1), C1C27–C1C33 (2010)

    Article  Google Scholar 

  19. C.L. Petersen, R. Lin, D.H. Petersen, P.F. Nielsen, Micro-scale sheet resistance measurements on ultra shallow junctions. 2006 14th International Conference on Advanced Thermal Processing of Semiconductors (IEEE Cat No. 06EX1530), (2006) pp. 153–158

    Google Scholar 

  20. T. Clarysse, P. Eyben, B. Parmentier, B. Van Daele, A. Satta, W. Vandervorst, R. Lin, D.H. Petersen, P.F. Nielsen, Advanced carrier depth profiling on si and ge with micro four-point probe. J. Vac. Sci. Technol. B 26(1), 317–321 (2008)

    Article  Google Scholar 

  21. V.N. Faifer, M.I. Current, T.M.H. Wong, V.V. Souchkov, Noncontact sheet resistance and leakage current mapping for ultra-shallow junctions. J. Vac. Sci. Technol. B: Microelectron. Nanom. Struct. 24(1), 414–420 (2006). http://link.aip.org/link/?JVB/24/414/1

  22. T.M.H. Wong T. Nguyen M.I. Current, V.N. Faifer, A. Koo. Non-contact sheet resistance and leakage current monitoring of multi-implant, ultra-shallow junctions: Doping and damage effects for ms-anneals

    Google Scholar 

  23. F. Korsos, K. Kis-Szabo, E. Don, A. Pap, T. Pavelka, C. Laviron, M. Pfeffer, Junction photovoltage metrology and high resolution mapping of ion implants electrically isolated from the wafer surface. Ion Implant. Technol. 2008(1066), 113–116 (2008)

    ADS  Google Scholar 

  24. V.N. Faifer, M.I. Current, D.K. Schroder, Characterization of ultrashallow junctions using frequency-dependent junction photovoltage and its lateral attenuation. Appl. Phys. Lett. 89(15), 151123 (2006)

    Article  ADS  Google Scholar 

  25. Frontier Semiconductor. Operational Manual: RsL 100

    Google Scholar 

  26. V.N. Faifer, M.L. Current, T. Nguyen, T.M.H. Wong, V.V. Souchkov, Non-contact measurement of sheet resistance and leakage current: applications for usj-sde/halo junctions. Extended Abstracts of the Fifth International Workshop on Junction Technology (IEEE Cat. No.05EX1126), 2006, pp. 45–48

    Google Scholar 

  27. T. Clarysse, A. Moussa, B. Parmentier, J. Bogdanowicz, W. Vandervorst, H. Bender, M. Pfeffer, M. Schellenberger, P.F. Nielsen, S. Thorsteinsson, R. Lin, D. Petersen, Photovoltage versus microprobe sheet resistance measurements on ultrashallow structures. J. Vac. Sci. Technol. B 28(1), C1C8–C1C14 (2010)

    Article  Google Scholar 

  28. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, Chichester, 2007)

    Google Scholar 

  29. M. Gostein, P.A. Rosenthal, A. Maznev, A. Kasic, P. Weidner, P.Y. Guittet, Measuring deep-trench structures with model-based ir. Solid State Technol. 49(3), 38 (2006)

    Google Scholar 

  30. C. Defranoux, T. Emeraud, S. Bourtault, J. Venturini, P. Boher, M. Hernandez, C. Laviron, I. Noguchi, Infrared spectroscopic ellipsometry applied to the characterization of ultra shallow junction on silicon and soi. Thin Solid Films 455–456, 150–156 (2004)

    Article  Google Scholar 

  31. B. Senitzky, S.P. Weeks, Infrared reflectance spectra of thin epitaxial silicon layers. J. Appl. Phys. 52(8), 5308–5314 (1981), http://link.aip.org/link/?JAP/52/5308/1

    Google Scholar 

  32. A. Maznev, Measuring usj samples with model-based infrared spectroscopic reflectometry (mbir). Technical report, AMS, 2006

    Google Scholar 

  33. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970)

    Google Scholar 

  34. I. Barbereau, B.C. Forget, D. Fournier, Characterization of electronic transport properties in semiconductors by scanning photothermal microscopy. Prog. Nat. Sci. 6, S479–S482 (1996)

    Google Scholar 

  35. B.C. Forget, D. Fournier, Electronic transport-properties characterization of silicon-wafers by modulated photoreflectance. Journal de Physique IV 1(C6), 277–282 (1991)

    Google Scholar 

  36. B.C. Forget, I. Barbereau, D. Fournier, S. Tuli, A.B. Battacharyya, Electronic diffusivity measurement in silicon by photothermal microscopy. Appl. Phys. Lett. 69(8), 1107–1109 (1996)

    Article  ADS  Google Scholar 

  37. D. Fournier, A.C. Boccara, Thermal wave probing of the optical electronic and thermal-properties of semiconductors. Mater. Sci. Eng. B-Solid State Mater. Adv. technol. 5(2), 83–88 (1990)

    Google Scholar 

  38. B. Li, L. Pottier, J.P. Roger, D. Fournier, E. Welsch, Thermal characterization of film-on-substrate systems with modulated thermoreflectance microscopy. Rev. Sci. Instrum. 71(5), 2154–60 (2000)

    Article  ADS  Google Scholar 

  39. L. Nicolaides, A. Salnick, J. Opsal, Study of low energy implants for ultrashallow junctions using thermal wave and optical techniques. Rev. Sci. Instrum. 74(1), 563–565 (2003)

    Article  ADS  Google Scholar 

  40. L. Nicolaides, A. Salnick, J. Opsal, Nondestructive analysis of ultrashallow junctions using thermal wave technology. Rev. Sci. Instrm. 74(1), 586–588 (2003)

    Article  ADS  Google Scholar 

  41. A. Salnick, J. Opsal, Quantitative photothermal characterization of ion-implanted layers in si. J. Appl. Phys. 91(5), 2874–2882 (2002)

    Article  ADS  Google Scholar 

  42. G. Smets, E. Rosseel, G. Sterckx, J. Bogdanowicz, W. Vandervorst, D. Shaughnessy, Transfer from rs-based to pmor-based ion implantation process monitoring. AIP Conf. Proc. 1321, 426–31 (2011)

    Article  ADS  Google Scholar 

  43. P. Borden, C. Ferguson, D. Sing, L. Larson, L. Bechtler, K. Jones, P Gable, In-line characterization of preamorphous implants (pai). Technical report, BoxerCross, 2000

    Google Scholar 

  44. C. Christofides, I.A. Vitkin, A. Mandelis, Photothermal reflectance investigation of processed silicon. i. room-temperature study of the induced damage and of the annealing kinetics of defects in ion-implanted wafers. J. Appl. Phys. 67(6), 2815–21 (1990)

    Article  ADS  Google Scholar 

  45. B.C. Forget, D. Fournier, Characterization of implanted silicon-wafers by the nonlinear photoreflectance technique. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 24(1–3), 199–202 (1994)

    Google Scholar 

  46. B.C. Forget, D. Fournier, V.E. Gusev, Non-linear recombination processesapplication to quantitative implantation characterization. J. de Physique 4(C7), 155–158 (1994)

    Google Scholar 

  47. W. Vandervorst, T. Clarysse, B. Brijs, R. Loo, Y. Peytier, B.J. Pawlak, E. Budiarto, and P. Borden, Carrier illumination as a tool to probe implant dose and electrical activation. in 2003 International Conference on Characterization and Metrology for ULSI Technology, ed. by D.G. Seiler, A.C. Diebold, T.J. Shaffner, R. McDonald, S. Zollner, R.P. Khosla, E.M. Secula, vol. 683 (AIP, 2003) pp. 758–763. http://link.aip.org/link/?APC/683/758/1

  48. A. Rosencwaig, J. Opsal, W.L. Smith, D.L. Willenborg, Detection of thermal waves through optical reflectance. Appl. Phys. Lett. 46(11), 1013–1015 (1985)

    Article  ADS  Google Scholar 

  49. D. Fournier, C. Boccara, A. Skumanich, N.M. Amer, Photothermal investigation of transport in semiconductorstheory and experiment. J. Appl. Phys. 59(3), 787–795 (1986)

    Article  ADS  Google Scholar 

  50. J. Opsal, Thermal and plasma waves in semiconductors. Rev. Progr. Quant. Nondestruct. Eval. 6B, 1339–1346 (1987)

    Google Scholar 

  51. J. Opsal, M.W. Taylor, W.L. Smith, A. Rosencwaig, Temporal behavior of modulated optical reflectance in silicon. J. Appl. Phys. 61(1), 240–248 (1987)

    Article  ADS  Google Scholar 

  52. J. Opsal, A. Rosencwaig, Theory of bulk and near surface effects on the modulated optical reflectance in silicon. Photoacoustic and Photothermal Phenomena 58, 224–228 (1988)

    Google Scholar 

  53. R.E. Wagner, A. Mandelis, A generalized calculation of the temperature and drude photo-modulated optical reflectance coefficients in semiconductors. J. Phys. Chem. Solids 52(9), 1061–1070 (1991)

    Article  ADS  Google Scholar 

  54. R.E. Wagner, A. Mandelis, Quantitative photomodulated thermoreflectance studies of germanium and silicon semiconductors. J. de Physique IV 4(C7), 141–144 (1994)

    Article  Google Scholar 

  55. A. Mandelis, R.E. Wagner, Quantitative deconvolution of photomodulated thermoreflectance signals from si and ge semiconducting samples. Jpn. J. Appl. Phys. Part 1 35(3), 1786–1797 (1996)

    Article  Google Scholar 

  56. C. Christofides, A. Othonos, E. Loizidou, Photomodulated thermoreflectance investigation at elevated temperatures: plasma versus thermal effect. Appl. Phys. Lett. 82(7), 1132–4 (2003)

    Article  ADS  Google Scholar 

  57. US Patent 6323951 B1 (Nov. 2001): Apparatus and method for determining the active dopant profile in a semiconductor wafer, 2001

    Google Scholar 

  58. P. Borden, R. Nijmeijer, J. P. Li, L. Bechtler, K. Lingel, Nondestructive profile measurements of annealed shallow implants. J. Vac. Sci. Technol. B: Microelectron. Nanom. Struct. textbf18(1), 602–604, (2000) http://link.aip.org/link/?JVB/18/602/1

  59. P. Borden, Optical, non-destructive characterization of ultra-shallow junctions. Mater. Sci. Semiconduct. process. 4(1–3), 9–14 (2001)

    Article  Google Scholar 

  60. T. Clarysse, W Vandervorst, R. Lindsay, P. Borden, E. Budiarto, J. Madsen, N.J. Nijmeijer Junction and profile analysis using carrier illumination. Technical report, IMEC, 2003

    Google Scholar 

  61. T. Clarysse, R. Lindsay, W. Vandervorst, E. Budiarto, P. Borden. Carrier illumination for characterization of ultrashallow doping profiles. J. Vac. Sci. Technol. B: Microelectron. Nanom. Struct. 22(1), 439–443 (2004) http://link.aip.org/link/?JVB/ww/439/1

    Google Scholar 

  62. T. Clarysse, F. Dortu, W. Vandervorst, Patent: Method for the independent extraction of the carrier concentration level and electrical junction depth in carrier illumination. Technical report, IMEC, 2004

    Google Scholar 

  63. W. Vandervorst, T. Clarysse, N. Duhayon, P. Heyben, T. Hantschel, M. Xu, T. Janssens, Ultra shallow junction profiling. in IEDM, (2000) pp. 429–432

    Google Scholar 

  64. F. Dortu, T. Clarysse, R. Loo, B. Pawlak, R. Delhougne, W. Vandervorst, Progress in the physical modeling of carrier illumination. J. Vac. Sci. Technol. B 24(3), 1131–1138 (2006)

    Article  Google Scholar 

  65. F. Dortu, T. Clarysse, R. Loo, W. Vandervorst, Extracting active dopant profile information from carrier illumination power curves. J. Vac. Sci. Technol. B 24(1), 375–380 (2006)

    Article  Google Scholar 

  66. F. Dortu, J. Bogdanowicz, T. Clarysse, W. Vandervorst, Nonlinear study of photoelectrothermal modulated optical reflectance for active dopant profile extraction. J. Appl. Phys. 101, 053107 (2007)

    Article  ADS  Google Scholar 

  67. F. Dortu, J. Bogdanowicz, T. Clarysse, Impact of band gap narrowing and surface recombination on photoelectrothermal modulated optical reflectance power curves. J. Vac. Sci. Technol. B 26, 322–332 (2008)

    Article  Google Scholar 

  68. F. Dortu, Low-Frequency Modulated Optical Reflectance for the One-Dimensional Characterization of Ultra-Shallow Junctions. Ph.D. thesis, Katholieke Universiteit Leuven, 2009

    Google Scholar 

  69. L. Nicolaides, A. Salnik, J. Opsal, Position modulated optical reflectance measurement system for semiconductor metrology. (7212288), May 2007, http://www.freepatentsonline.com/7212288.html

  70. C.G. Wells , A. Rosencwaig, W.L .Smith, Apparatus for evaluating thermal and electrical characteristics in a sample. (5228776), July 1993, http://www.freepatentsonline.com/5228776.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Bogdanowicz .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bogdanowicz, J. (2012). Introduction. In: Photomodulated Optical Reflectance. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30108-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30108-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30107-0

  • Online ISBN: 978-3-642-30108-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics