Collaborative Forwarding and Caching in Content Centric Networks

  • Shuo Guo
  • Haiyong Xie
  • Guangyu Shi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7289)


Content caching plays an important role in content-centric networks. The current design of content-centric networks adopts a limited, en-route hierarchical caching mechanism, and caching and forwarding are largely uncoordinated. In this paper, we propose a novel collaborative caching and forwarding design. In this design, collaboration is guided by content popularity ranking, based on which we introduce a collaborative forwarding table to allow coordination between caching and forwarding. We also propose a self-adaptive dual-segment cache division algorithm to deal with dynamic inconsistent content popularity. We evaluate our design via extensive simulations and demonstrate that our design improves content access cost and cache miss rate by at least 30% in a diverse network settings.


content-centric network name-based routing collaborative forwarding and caching 


  1. 1.
  2. 2.
  3. 3.
    Akamai Technologies, http://www.akamai.comGoogle Scholar
  4. 4.
    Amazon CloudFront Express,
  5. 5.
    Anand, A., Dogar, F., Han, D., Li, B., Lim, H., Machadoy, M., Wu, W., Akella, A., Andersen, D., Byersy, J., Seshan, S., Steenkiste, P.: XIA: An architecture for an evolvable and trustworthy internet. Tech. Rep. CMU-CS-11-100, Carnegie Mellon University (February 2011)Google Scholar
  6. 6.
    Anderson, T., Birman, K., Broberg, R., Caesar, M., Comer, D., Cotton, C., Freedman, M., Haeberlen, A., Ives, Z., Krishnamurthy, A., Lehr, W., Loo, B.T., Mazires, D., Nicolosi, A., Smith, J., Stoica, I., van Renesse, R., Walfish, M., Weatherspoon, H., Yoo, C.: NEBULA - a future internet that supports trustworthy cloud computing. White Paper (2010)Google Scholar
  7. 7.
  8. 8.
    Borst, S., Gupta, V., Walid, A.: Distributed caching algorithms for content distribution networks. In: IEEE INFOCOM 2010, San Diego, CA (March 2010)Google Scholar
  9. 9.
    Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and zipf-like distributions: evidence and implications. In: Proc. IEEE INFOCOM 1999, vol. 1 (March 1999) Google Scholar
  10. 10.
    Carofiglio, G., Gallo, M., Muscariello, L., Perino, D.: Modeling data transfer in content-centric networking. In: ITC 2011, pp. 111–118 (2011)Google Scholar
  11. 11.
  12. 12.
  13. 13.
    Cheng, X., Dale, C., Liu, J.: Statistics and social network of youtube videos. In: Proc. IWQoS 2008, pp. 229–238 (June 2008)Google Scholar
  14. 14.
    Chow, C.Y., Leong, H.V., Chan, A.T.S.: Distributed group-based cooperative caching in a mobile broadcast environment. In: Proc. of Mobile Data Management 2005, pp. 97–106 (2005)Google Scholar
  15. 15.
    Dannewitz, C.: NetInf: An information-centric design for the future internet. In: Proc. 3rd GI/ITG KuVS Workshop on the Future Internet (May 2009)Google Scholar
  16. 16.
    Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., Weihl, B.: Globally distributed content delivery. IEEE Internet Computing, 50–58 (September/October 2002)Google Scholar
  17. 17.
    Dykes, S., Robbins, K.: A vaibility analysis of cooperative proxy caching. In: IEEE INFOCOM 2001, pp. 1205–1214. Anchorage, AK (2001)Google Scholar
  18. 18.,
  19. 19.
    Erman, J., Gerber, A., Hajiaghayi, M.T., Pei, D., Sen, S., Spatscheck, O.: To cache or not to cache: The 3g case. IEEE Internet Computing 15, 27–34 (2011)CrossRefGoogle Scholar
  20. 20.
    Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a scalable wide-area web cache sharing protocol. IEEE/ACM Trans. Netw. 8 (June 2000)Google Scholar
  21. 21.
    Gadde, S., Chase, J., Rabinovich, M.: Web caching and content distribution: a view from the interior. Computer Communications 24(2), 222–231 (2001)CrossRefGoogle Scholar
  22. 22.
    Gill, P., Arlitt, M., Li, Z., Mahanti, A.: Youtube traffic characterization: a view from the edge. In: Proc. ACM IMC 2007. ACM, New York (2007)Google Scholar
  23. 23.
    Hefeeda, M., Noorizadeh, B.: On the benefits of cooperative proxy caching for peer-to-peer traffic. IEEE Transactions on Parallel and Distributed Systems 21, 998–1010 (2010)CrossRefGoogle Scholar
  24. 24.
    Helgason, O., Karlsson, G.: Podnet: A system architecture for opportunistic content distribution. Tech. rep., Royal Institute of Technology (KTH) (February 2010)Google Scholar
  25. 25.
    Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard, R.L.: Networking named content. In: ACM CoNEXT 2009, Rome, Italy (December 2009)Google Scholar
  26. 26.
    Korupolu, M.R., Dahlin, M.: Coordinated placement and replacement for large-scale distributed caches. IEEE Transactions on Knowledge and Data Engineering 14, 1317–1329 (2002)CrossRefGoogle Scholar
  27. 27.
    Level3 Communications,
  28. 28.
    Limelight Networks,
  29. 29.
    Ni, J., Tsang, D.: Large-scale cooperative caching and application-level multicast in multimedia content delivery networks. IEEE Communications Magazine, 43(5) (May 2005)Google Scholar
  30. 30.
    Pathan, M., Buyya, R., Vakali, A.: Content delivery networks: State of the art, insights, and imperatives. In: Buyya, R., Pathan, M., Vakali, A. (eds.) Content Delivery Networks. LNEE, vol. 9, pp. 3–32. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Psaras, I., Clegg, R., Landa, R., Chai, W., Pavlou, G.: Modelling and Evaluation of CCN-Caching Trees. In: Domingo-Pascual, J., Manzoni, P., Palazzo, S., Pont, A., Scoglio, C. (eds.) NETWORKING 2011, Part I. LNCS, vol. 6640, pp. 78–91. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  32. 32.
    Sailhan, F., Issarny, V.: Cooperative Caching in Ad Hoc Networks. In: Chen, M.-S., Chrysanthis, P.K., Sloman, M., Zaslavsky, A. (eds.) MDM 2003. LNCS, vol. 2574, pp. 13–28. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  33. 33.
    Sarkar, P., Hartman, J.H.: Hint-based cooperative caching. ACM Trans. Comput. Syst. 18 (November 2000)Google Scholar
  34. 34.
    Wessels, D., Claffy, K.: Internet cache protocol (icp), version 2 (1997)Google Scholar
  35. 35.
    Wolman, A., Voelker, M., Sharma, N., Cardwell, N., Karlin, A., Levy, H.M.: On the scale and performance of cooperative web proxy caching. In: Proc. ACM SOSP 1999, pp. 16–31 (1999)Google Scholar
  36. 36.
    Xie, H., Shi, G., Wang, P.: TECC: Towards collaborative in-network caching guided by traffic engineering. In: IEEE INFOCOM 2012, Orlando, FL (March 2012)Google Scholar
  37. 37.
    Yin, L., Cao, G.: Supporting cooperative caching in ad hoc networks. IEEE Transactions on Mobile Computing 5, 77–89 (2006)CrossRefGoogle Scholar
  38. 38.
    Zhang, L., Estrin, D., Burke, J., Jacobson, V., Thornton, J.D., Smetters, D.K., Zhang, B., Tsudik, G., Claffy, K.C., Krioukov, D., Massey, D., Papadopoulos, C., Abdelzaher, T., Wang, L., Crowley, P., Yeh, E.: Named data networking (NDN) project. Tech. Rep. NDN-0001, Palo Alto Research Center (PARC) (October 2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Shuo Guo
    • 1
  • Haiyong Xie
    • 2
    • 3
  • Guangyu Shi
    • 3
  1. 1.University of MinnesotaMinneapolisUSA
  2. 2.University of Science and Technology of ChinaHefeiChina
  3. 3.Central Research InstituteHuawei TechnologiesShenzhenChina

Personalised recommendations