Estimating Network Layer Subnet Characteristics via Statistical Sampling

  • M. Engin Tozal
  • Kamil Sarac
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7289)


Network layer Internet topology consists of a set of routers connected to each other through subnets. Recently, there has been a significant interest in studying topological characteristics of subnets in addition to routers in the Internet. However, given the size of the Internet, constructing complete subnet level topology maps is neither practical nor economical. A viable solution, then, is to sample subnets in the target domain and estimate their global characteristics. In this study, we propose a sampling framework for subnets; derive proper estimators for various subnet characteristics including total number of subnets, subnet prefix length distribution, mean subnet degree, and IP address utilization; and analyze the theoretical and empirical aspects of these estimators.


network topology sampling 


  1. 1.
    The Internet Topology Zoo,
  2. 2.
    Achlioptas, D., Clauset, A., Kempe, D., Moore, C.: On the bias of traceroute sampling. In: ACM STOC, Baltimore, MD, USA (May 2005)Google Scholar
  3. 3.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: SIGCOMM, New York, NY, USA (October 1999)Google Scholar
  4. 4.
    Govindan, R., Tangmunarunkit, H.: Heuristics for Internet map discovery. In: IEEE INFOCOM, Tel Aviv, Israel (March 2000)Google Scholar
  5. 5.
    Heidemann, J., Govindan, R., Papadopoulos, C., Bartlett, G., Bannister, J.: Census and survey of the visible internet. In: ACM IMC, Vouliag, Greece (October 2008)Google Scholar
  6. 6.
    Irwin Miller, M.M.: John E. Freund’s Mathematical Statistics with Applications. Prentice Hall (October 2003)Google Scholar
  7. 7.
    Claffy, K., Monk, T.E., McRobb, D.: Internet Tomography. Nature (January 1999)Google Scholar
  8. 8.
    Lakhina, A., Byers, J., Crovella, M., Xie, P.: Sampling biases in IP topology measurements. In: IEEE INFOCOM, San Francisco, CA, USA (March 2003)Google Scholar
  9. 9.
    Mann, P.S.: Introductory Statistics. Wiley (February 2010)Google Scholar
  10. 10.
    Shavitt, Y., Shir, E.: DIMES: Distributed Internet measurements and simulations, project page,
  11. 11.
    Sherwood, R., Bender, A., Spring, N.: DisCarte: A disjunctive internet cartographer. In: ACM SIGCOMM, Seattle, WA, USA (August 2008)Google Scholar
  12. 12.
    Spring, N., Mahajan, R., Wetherall, D., Anderson, T.: Measuring ISP topologies with Rocketfuel. IEEE/ACM Transactions On Networking 12(1), 2–16 (2004)CrossRefGoogle Scholar
  13. 13.
    Thompson, S.K.: Sampling. Wiley-Interscience (April 2002)Google Scholar
  14. 14.
    Tozal, M.E., Sarac, K.: TraceNET: An internet topology data collector. In: ACM Internet Measurement Conference, Melbourne, Australia (November 2010)Google Scholar
  15. 15.
    Tozal, M.E., Sarac, K.: Palmtree: An ip alias resolution algorithm with linear probing complexity. Computer Communications 34, 658–669 (2011)CrossRefGoogle Scholar
  16. 16.
    Tozal, M.E., Sarac, K.: Subnet level network topology mapping. In: IEEE IPCCC, Orlando, FL, USA (November 2011)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • M. Engin Tozal
    • 1
  • Kamil Sarac
    • 1
  1. 1.Department of Computer ScienceThe University of Texas at DallasRichardsonUSA

Personalised recommendations