Skip to main content

Using Automatic Differentiation to Study the Sensitivity of a Crop Model

  • Conference paper
  • First Online:
Book cover Recent Advances in Algorithmic Differentiation

Abstract

Automatic Differentiation (AD) is often applied to codes that solve partial differential equations, e.g. in geophysical sciences or Computational Fluid Dynamics. In agronomy, the differentiation of crop models has never been performed since these models are more empirical than fully mecanistic, derived from equations. This study shows the feasibility of constructing the adjoint model of a crop model referent in the agronomic community (STICS) with the TAPENADE tool, and the use of this accurate adjoint to perform some sensitivity analysis. This paper reports on the experience from AD users of the environmental domain, in which AD usage is not very widespread.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.avignon.inra.fr/agroclim_stics_eng

  2. 2.

    ADAM experiment (Data Assimilation through Agro-Modelling). Project and database at http://kalideos.cnes.fr/spip.php?article68

  3. 3.

    All the parameters of STICS are described in http://www.avignon.inra.fr/agroclim_stics_eng/notices_d_utilisation

References

  1. Baret, F., Vintila, R., Lazar, C., Rochdi, N., Prévot, L., Favard, J., de Boissezon, H., Lauvernet, C., Petcu, E., Petcu, G., Voicu, P., Denux, J., Poenaru, V., Marloie, O., Simota, C., Radnea, C., Turnea, D., Cabot, F., Henry, P.: The adam database and its potential to investigate high temporal sampling acquisition at high spatial resolution for the monitoring of agricultural crops. Romanian Agricultural Research 16, 69–80 (2001)

    Google Scholar 

  2. Brisson, N., Mary, B., Ripoche, D., Jeuffroy, M.H., Ruget, F., Nicoullaud, B., Gate, P., Devienne-Barret, F., Antonioletti, R., Durr, C., Richard, G., Beaudoin, N., Recous, S., Tayot, X., Plenet, D., Cellier, P., Machet, J.M., Meynard, J.M., Delecolle, R.: STICS: a generic model for the simulation of crops and their water and nitrogen balances. I: theory and parameterization applied to wheat and corn. Agronomie 18(5–6), 311–346 (1998)

    Google Scholar 

  3. Brisson, N., Ruget, F., Gate, P., Lorgeou, J., Nicoullaud, B., Tayot, X., Plenet, D., Jeuffroy, M.H., Bouthier, A., Ripoche, D., Mary, B., Justes, E.: STICS: a generic model for simulating crops and their water and nitrogen balances. II: model validation for wheat and maize. Agronomie 22(1), 69–92 (2002)

    Google Scholar 

  4. Castaings, W., Dartus, D., Le Dimet, F.X., Saulnier, G.M.: Sensitivity analysis and parameter estimation for distributed hydrological modeling: potential of variational methods. Hydrol. Earth Syst. Sci. 13(4), 503–517 (2009)

    Google Scholar 

  5. Griewank, A.: Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation. Optimization Methods and Software 1, 35–54 (1992)

    Google Scholar 

  6. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2nd edn. No. 105 in Other Titles in Applied Mathematics. SIAM, Philadelphia, PA (2008). URL http://www.ec-securehost.com/SIAM/OT105.html

  7. Guérif, M., Houlès, V., Makowski, D., Lauvernet, C.: Data assimilation and parameter estimation for precision agriculture using the crop model STICS. In: D. Wallach, D. Makowski, J.W. Jones (eds.) Working with dynamic crop models: evaluating, analyzing, parameterizing and using them, chap. 17, pp. 391–398. Elsevier (2006)

  8. Hascoët, L., Pascual, V.: TAPENADE 2.1 user’s guide. Rapport technique 300, INRIA, Sophia Antipolis (2004). URL http://www.inria.fr/rrrt/rt-0300.html

  9. Houlès, V., Mary, B., Guérif, M., Makowski, D., Justes, E.: Evaluation of the ability of the crop model stics to recommend nitrogen fertilisation rates according to agro-environmental criteria. Agronomie 24(6), 339–349 (2004)

    Google Scholar 

  10. Ionescu-Bujor, M., Cacuci, D.G.: A comparative review of sensitivity and uncertainty analysis of large-scale systems. I: deterministic methods. Nuclear science and engineering 147(3), 189–203 (2004)

    Google Scholar 

  11. Lauvernet, C., Baret, F., Hascoët, L., Buis, S., Le Dimet, F.X.: Multitemporal-patch ensemble inversion of coupled surface-atmosphere radiative transfer models for land surface characterization. Remote Sens. Environ. 112(3), 851–861 (2008)

    Google Scholar 

  12. Le Dimet, F.X., Ngodock, H.E., Navon, I.M.: Sensitivity analysis in variational data assimilation. J. Meteorol. Soc. Japan pp. 145–155 (1997)

    Google Scholar 

  13. Le Dimet, F.X., Talagrand, O.: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A 38A(2), 97–110 (1986)

    Google Scholar 

  14. Lions, J.L.: Optimal control of systems governed by partial differential equations. Springer-Verlag (1968)

    Google Scholar 

  15. Olioso, A., Inoue, Y., Ortega-FARIAS, S., Demarty, J., Wigneron, J., Braud, I., Jacob, F., Lecharpentier, P., Ottl, C., Calvet, J., Brisson, N.: Future directions for advanced evapotranspiration modeling: Assimilation of remote sensing data into crop simulation models and SVAT models. Irrigation and Drainage Systems 19(3–4), 377–412 (2005)

    Google Scholar 

  16. Rosenberg, N.J., Blad, B.L., Verma, S.B.: Microclimate: the biological environment. Wiley-Interscience (1983)

    Google Scholar 

  17. Ruget, F., Brisson, N., Delecolle, R., Faivre, R.: Sensitivity analysis of a crop simulation model, STICS, in order to choose the main parameters to be estimated. Agronomie v. 22(2) p. 133–158 (2002)

    Google Scholar 

  18. Saltelli, A., Chan, K., Scott, E.M.: Sensitivity Analysis. Wiley (2000)

    Google Scholar 

  19. Varella, H., Guérif, M., Buis, S.: Global sensitivity analysis measures the quality of parameter estimation: The case of soil parameters and a crop model. Environmental Modelling and Software 25(3), 310–319 (2010)

    Google Scholar 

  20. Verhoef, W.: Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sensing of Environment 16(2), 125–141 (1984)

    Google Scholar 

Download references

Acknowledgements

This study was conducted thanks to a grant provided by CNES within the ADAM project (http://kalideos.cnes.fr/spip.php?article68), during the Ph.D. of the first author at INRA Avignon and the University of Grenoble.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Lauvernet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lauvernet, C., Hascoët, L., Le Dimet, FX., Baret, F. (2012). Using Automatic Differentiation to Study the Sensitivity of a Crop Model. In: Forth, S., Hovland, P., Phipps, E., Utke, J., Walther, A. (eds) Recent Advances in Algorithmic Differentiation. Lecture Notes in Computational Science and Engineering, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30023-3_6

Download citation

Publish with us

Policies and ethics