Skip to main content

Backstepping for Linear Diffusion–Convection–Reaction Systems with Varying Parameters on 1–Dimensional Domains

  • Chapter
  • 1217 Accesses

Part of the book series: Communications and Control Engineering ((CCE))

Abstract

For finite–dimensional (nonlinear) systems backstepping yields a powerful recursive technique for feedback stabilization [13]. The approach relies on the application of a Lyapunov–based or passivation design to a part of the system followed by a successive reapplication by augmenting the subsystem at each step to finally recover the whole system [27, 11].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, N., Xiang, X.: Nonlinear Boundary Control of Semilinear Parabolic Systems. SIAM J. Control Optim. 34(2), 473–490 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amann, H.: Parabolic Evolution Equations and Nonlinear Boundary Conditions. J. Diff. Eqns. 72, 201–269 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baehr, H., Stephan, K.: Heat and Mass Transfer, 2nd edn. Springer, Berlin (2006)

    Book  Google Scholar 

  4. Balogh, A., Krstic, M.: Stability of partial difference equations governing control gains in infinite–dimensional backstepping. Systems & Control Letters 51, 151–164 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bošković, D., Krstic, M.: Backstepping control of chemical tubular reactors. Comp. Chem. Eng. 26, 1077–1085 (2002)

    Article  Google Scholar 

  6. Bošković, D., Balogh, A., Krstic, M.: Backstepping in infinite dimension for a class of parabolic distributed parameter systems. Math. Control. Signal. 16, 44–75 (2003)

    MATH  Google Scholar 

  7. Cochran, J., Krstic, M.: Motion planning and trajectory tracking for three–dimensional Poiseuille flow. J. Fluid Mech. 626, 307–332 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colton, D.: The Solution of Initial–Boundary Value Problems for Parabolic Equations by the Method of Integral Operators. J. Diff. Eqns. 26, 181–190 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dunbar, W., Petit, N., Rouchon, P., Martin, P.: Motion Planning for a nonlinear Stefan Problem. ESAIM Contr. Optim. Ca. 9, 275–296 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gevrey, M.: Sur la nature analytique des solutions des équations aux dérivées partielles. Annales Scientifiques de l’Ecole Normale Superieure 25, 129–190 (1918)

    MathSciNet  Google Scholar 

  11. Khalil, H.: Nonlinear Systems, 3rd edn. Prentice-Hall, New Jersey (2002)

    MATH  Google Scholar 

  12. Krstic, M., Smyshlyaev, A.: Boundary Control of PDEs: A Course on Backstepping Designs. SIAM, Philadelphia (2008)

    MATH  Google Scholar 

  13. Krstić, M., Kanellakopoulos, I., Kokotović, P.: Nonlinear and Adaptive Control Design. John Wiley & Sons, New York (1995)

    Google Scholar 

  14. Krstic, M., Guo, B., Balogh, A., Smyshlyaev, A.: Output–feedback stabilization of an unstable wave equation. Automatica 44(1), 63–74 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krstic, M., Magnis, L., Vazquez, R.: Nonlinear Stabilization of Shock–Like Unstable Equilibria in the Viscous Burgers PDE. IEEE Trans. Automat. Control 53(7), 1678–1683 (2008)

    Article  MathSciNet  Google Scholar 

  16. Ladyženskaja, O., Solonnikov, V., Ural’ceva, N.: Linear and Quasi–linear Equations of Parabolic Type. Translations of Mathematical Monographs, 5th edn., vol. 23. American Mathematical Society, Providence (1998)

    Google Scholar 

  17. Laroche, B., Martin, P., Rouchon, P.: Motion planning for the heat equation. Int. J. Robust Nonlinear Control 10, 629–643 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lions, J.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Heidelberg (1971)

    Book  MATH  Google Scholar 

  19. Liu, W.: Boundary feedback stabilization of an unstable heat equation. SIAM J. Control Optim. 42(3), 1033–1043 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lynch, A., Rudolph, J.: Flatness–based boundary control of a class of quasilinear parabolic distributed parameter systems. Int. J. Control 75(15), 1219–1230 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Meurer, T.: Feedforward and Feedback Tracking Control of Diffusion–Convection–Reaction Systems using Summability Methods. Fortschr.–Ber. VDI Reihe 8 Nr. 1081. VDI Verlag, Düsseldorf (2005)

    Google Scholar 

  22. Meurer, T., Kugi, A.: Tracking control for a diffusion–convection–reaction system: combining flatness and backstepping. In: Proc. 7th IFAC Symposium Nonlinear Control Systems (NOLCOS 2007), Pretoria (SA), pp. 583–588 (2007)

    Google Scholar 

  23. Meurer, T., Kugi, A.: Tracking control for boundary controlled parabolic PDEs with varying parameters: combining backstepping and flatness. Automatica 45(5), 1182–1194 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Meurer, T., Zeitz, M.: Feedforward and feedback tracking control of nonlinear diffusion–convection–reaction systems using summability methods. Ind. Eng. Chem. Res. 44, 2532–2548 (2005)

    Article  Google Scholar 

  25. Ray, W.: Advanced Process Control. McGraw–Hill, New York (1981)

    Google Scholar 

  26. Seidman, T.I.: Two Results on Exact Boundary Control of Parabolic Equations. Appl. Math Optim. 11, 145–152 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sepulchre, R., Janković, M., Kokotović, P.: Constructive Nonlinear Control. Springer, London (1997)

    Book  MATH  Google Scholar 

  28. Smyshlyaev, A., Krstic, M.: Regularity of hyperbolic PDEs governing backstepping gain kernels for parabolic PDEs. In: Proc. American Control Conference, Denver (CO), USA, vol. 3, pp. 2634–2639 (2003)

    Google Scholar 

  29. Smyshlyaev, A., Krstic, M.: Closed–Form Boundary State Feedbacks for a Class of 1–D Partial Integro–Differential Equations. IEEE Trans. Automat. Control 49(12), 2185–2202 (2004)

    Article  MathSciNet  Google Scholar 

  30. Smyshlyaev, A., Krstic, M.: Backstepping observers for a class of parabolic PDEs. Systems & Control Letters 54, 613–625 (2005a)

    Article  MathSciNet  MATH  Google Scholar 

  31. Smyshlyaev, A., Krstic, M.: On control design for PDEs with space–dependent diffusivity or time–dependent reactivity. Automatica 41, 1601–1608 (2005b)

    Article  MathSciNet  MATH  Google Scholar 

  32. Smyshlyaev, A., Guo, B.Z., Krstic, M.: Arbitrary decay rate for Euler–Bernoulli beam by backstepping boundary feedback. IEEE Trans. Autom. Control 54(5), 1134–1141 (2009)

    Article  MathSciNet  Google Scholar 

  33. Smyshlyaev, A., Cerpa, E., Krstic, M.: Boundary stabilization of a 1–D wave equation with in–domain anti–damping. SIAM J. Control Optim. 48(6), 4014–4031 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Vazquez, R., Krstic, M.: Control of 1-D parabolic PDEs with Volterra nonlinearities – Part I: Design. Automatica 44, 2778–2790 (2008a)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vazquez, R., Krstic, M.: Control of 1-D parabolic PDEs with Volterra nonlinearities – Part II: Analysis. Automatica 44, 2791–2803 (2008b)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Meurer .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meurer, T. (2013). Backstepping for Linear Diffusion–Convection–Reaction Systems with Varying Parameters on 1–Dimensional Domains. In: Control of Higher–Dimensional PDEs. Communications and Control Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30015-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30015-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30014-1

  • Online ISBN: 978-3-642-30015-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics