Skip to main content

The Role of Biotechnology in Cannabis sativa Propagation for the Production of Phytocannabinoids

  • Chapter
  • First Online:
Biotechnology for Medicinal Plants

Abstract

Cannabissativa L. (Cannabaceae) is an important medicinal plant that serves as a source of Cannabinoids, a unique class of terpenophenolic compounds which accumulates mainly in the glandular trichomes of the plant. Currently, about 110 phytocannabinoids have been isolated from C. sativa, the major biologically active compound being Δ9-tetrahydrocannabinol, commonly referred to as THC. Besides its psychoactivity, THC possesses analgesic, antiinflammatory, appetite stimulant, and antiemetic properties making it a very promising therapeutic agent especially for cancer and AIDS patients. Cannabidiol, Cannabichromene, Cannabigerol, Cannabinol, and Tetrahydrocannabivarin are other major bioactive phytocannabinoids present in the cannabis plant. Through a contract with the National Institute on Drug Abuse (NIDA), The University of Mississippi has been carrying out a variety of research activities dealing with cannabis, including growing, harvesting, and processing the cannabis biomass for research purposes making it available for licensed researchers across the country through NIDA. This chapter describes the role of biotechnology and our efforts to propagate C. sativa for the production of phytocannabinoids. This includes, screening of high yielding genotypes based on their chemical profile, propagation of these genotypes using biotechnological tools, comparison of micropropagated plants with the mother plants for consistency of chemical and genetic profiles and the utility of micropropagation in the conservation of elite clones for future use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams DI, Jay CA, Shade SB, Vizoso H, Reda H, Press S, Kelly ME, Rowbotham MC, Petersen KL (2007) Cannabis in painful HIV-associated sensory neuropathy: a randomized placebo-controlled trial. Neurology 68:515–521

    PubMed  CAS  Google Scholar 

  • Adams R, Baker BR, Wearn RB (1940a) Structure of cannabinol. III. Synthesis of cannabinol, 1-hydroxy-3-amyl-6,6,9-trimethyl-6-dibenzopyran. J Am Chem Soc 62:2204–2207

    CAS  Google Scholar 

  • Adams R, Hunt M, Clark JH (1940b) Structure of cannabidiol, a product isolated from the marihuana extract of Minnesota wild hemp. J Am Chem Soc 62:196–200

    CAS  Google Scholar 

  • Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27:617–631

    PubMed  CAS  Google Scholar 

  • Ahmed SA, Ross SA, Slade D, Radwan MM, Khan IA, ElSohly MA (2008) Structure determination and absolute configuration of cannabichromanone derivatives from high potency C. sativa. Tetrahedron Lett 49:6050–6053

    PubMed  CAS  Google Scholar 

  • Anand Y, Bansal YK (2002) Synthetic seeds: a novel approach of in vitro plantlet formation in vasaka (Adhatoda vasica Nees). Plant Biotech 19:159–162

    CAS  Google Scholar 

  • Bing X, Ning L, Jinfeng T, Nan G (2007) Rapid tissue culture method of Cannabis sativa for industrial uses. CN 1887043 A 20070103 Patent (p 9)

    Google Scholar 

  • Bócsa I, Máthé P, Hangyel L (1997) Effect of nitrogen on tetrahydrocannabinol (THC) content in hemp (C. sativa L.) leaves at different positions. J Int Hemp Assoc 4:80–81

    Google Scholar 

  • Brenneisen R, Egli A, ElSohly MA, Henn V, Spiess Y (1996) The effect of orally and rectally administered ∆9-tetrahydrocannabinol on spasticity: a pilot study with 2 patients. Int J Clin Pharmacol Ther 34:446–452

    PubMed  CAS  Google Scholar 

  • Brischia R, Piccioni E, Standardi A (2002) Micropropagation and synthetic seed in M.26 apple rootstock (II): a new protocol for production of encapsulated differentiating propagules. Plant Cell Tissue Organ Cult 68:137–141

    Google Scholar 

  • Cahn RS (1932) Cannabis indica resin. III. Constitution of cannabinol. J Chem Soc 3:1342–1353

    Google Scholar 

  • Chandra S, Lata H, Khan IA, ElSohly MA (2008) Photosynthetic response of C. sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions. Physiol Mol Biol Plants 14:299–306

    CAS  Google Scholar 

  • Chandra S, Lata H, Khan IA, ElSohly MA (2010a) Propagation of elite Cannabis sativa for the production of Δ9-Tetrahydrocannabinol (THC) using biotechnological tools. In: Arora R (ed) Medicinal plant biotechnology (Chapter 7). CABI, Wallingford, pp 98–114

    Google Scholar 

  • Chandra S, Lata H, Mehmedic Z, Khan IA, ElSohly MA (2010b) Assessment of cannabinoids content in micropropagated plants of Cannabis sativa L. and their comparison with conventionally propagated plants and mother plant during developmental stages of growth. Planta Med 76:743–750

    PubMed  CAS  Google Scholar 

  • Chandra S, Lata H, Khan IA, ElSohly MA (2011a) Temperature response of photosynthesis in different drug and fiber varieties of Cannabis sativa L. Physiol Mol Biol Plants 17(3):297–303

    CAS  Google Scholar 

  • Chandra S, Lata H, Khan IA, ElSohly MA (2011b) Photosynthetic response of Cannabis sativa L., an important medicinal plant, to elevated levels of CO2. Physiol Mol Biol Plants 17(3):291–295

    CAS  Google Scholar 

  • Chandrika M, Ravishankar Rai V, Thoyajoksha (2010) ISSR marker based analysis of micropropagated plantlets of Nothapodytes foetida. Biol Plant 54(3):561–565

    CAS  Google Scholar 

  • Collonier C, Mulya K, Fock I, Mariska I, Servaes A, Vedel F, Siljak-Yakovlev S, Souvannavong V, Ducreux G, Sihachakr D (2001) Source of resistance against Ralstonia solanaceraum in fertile somatic hybrids of eggplant (Solanum melongena L.) with Solanum aethiopicum L. Plant Sci 160:301–313

    Google Scholar 

  • Damasco OP, Graham GC, Henry RJ, Adkins SW, Smith MK (1996) Random amplified polymorphic DNA (RAPD) detection of dwarf off types in micropropagated Cavendish bananas. Acta Hort 461:157–164

    Google Scholar 

  • De Backer B, Debrus B, Lebrun P, Theunis L, Dubois N, Decock L, Verstraete A, Hubert P, Charlier C (2009) Innovative development and validation of an HPLC/DAD method for the qualitative and quantitative determination of major cannabinoids in cannabis plant material. J Chromatogr B Anal Technol Biomed Life Sci 877:4115–4124

    Google Scholar 

  • De Meijer EPM, Van Der Kamp HJ, Van Eeuwijk FA (1992) Characterization of cannabis accessions with regard to cannabinoid content in relation to other plant characters. Euphytica 62:187–200

    Google Scholar 

  • De Meijer EPM, Bagatta M, Carboni A, Crucitti P, Moliterni VMC, Ranalli P, Mandolino G (2003) The inheritance of chemical phenotype in C. sativa L. Genetics 163:335–346

    PubMed  Google Scholar 

  • Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34:605–613

    PubMed  CAS  Google Scholar 

  • Dodds JH, Roberts LW (1995) Experiments in plant tissue culture. Cambridge University Press, New York

    Google Scholar 

  • Doyle E, Spence AA (1995) Cannabis as a medicine? British J Anesthesia 74:359–361

    CAS  Google Scholar 

  • ElSohly MA, Slade D (2005) Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci 78:539–548

    PubMed  CAS  Google Scholar 

  • ElSohly MA, Ross SA, Mehmedic Z, Arafat R, Yi B, Banahan BF (2000) Potency trends of ∆9-THC and other cannabinoids in confiscated marijuana from 1980–1997. J Forensic Sci 45:24–30

    PubMed  CAS  Google Scholar 

  • Emboden WA (1974) Cannabis, a polytypic genus. Econ Bot 28:304–310

    Google Scholar 

  • Eshraghi P, Zarghami R, Ofoghi H (2005) Genetic stability of micropropagated plantlets in Date Palm. J Sci 16(4):311–315

    CAS  Google Scholar 

  • Faisal M, Anis M (2003) Rapid mass propagation of Tylophora indica Merrill via leaf callus culture. Plant Cell Tissue Organ Cult 75:125–129

    CAS  Google Scholar 

  • Faisal M, Anis M (2007) Regeneration of plants from alginate encapsulated shoots of Tylophora indica (Burm.f.) Merrill, an endangered medicinal plant. J Hort Sci Biotechnol 82:351–354

    CAS  Google Scholar 

  • Feeney M, Punja ZK (2003) Tissue culture and Agrobacterium-mediated transformation of hemp (Cannabis sativa L.). In Vitro Cellular Dev Biology-Plant 39:578–585

    CAS  Google Scholar 

  • Fellermeier M, Zenk MH (1998) Prenylation of olivetolate by a hemp transferase yields cannabigerolic acic, the precursor of tetrahydrocannabinol. FEBS Lett 427:283–285

    PubMed  CAS  Google Scholar 

  • Fisse J, Braut F, Cosson L, Paris M (1981) In vitro study of the organogenetic capacity of C. sativa L. tissues: effect of different growth substances. Plantes Medicinales et Phytotherapie 15:217–223

    CAS  Google Scholar 

  • Flachowsky H, Schuhmann E, Weber WE, Peil A (2001) Application of AFLP for the detection of sex-specific markers in hemp. Plant Breeding 120:305–309

    CAS  Google Scholar 

  • Flores-Sanchez IJ, Verpoorte R (2008a) Secondary metabolism in cannabis. Phytochem Rev 7:615–639

    CAS  Google Scholar 

  • Flores-Sanchez IJ, Verpoorte R (2008b) PKS activities and biosynthesis of cannabinoids and flavonoids in C. sativa L. plants. Plant Cell Physiol 49:1767–1782

    PubMed  CAS  Google Scholar 

  • Formukong EA, Evans AT, Evans F (1989) The medicinal uses of Cannabis and its constitutents. J Phytother Res 3:219–231

    CAS  Google Scholar 

  • Galal AM, Slade D, Gul W, El-Alfy AT, Ferreira D, ElSohly MA (2009) Naturally occurring and related synthetic cannabinoids and their potential therapeutic applications. Recent Pat CNS Drug Discov 4:112–136

    PubMed  CAS  Google Scholar 

  • Ganapathi TR, Srinivas I, Suprasanna P, Bapat VA (2001) Regeneration of plants from alginated-encapsulated somatic embryos of banana cv. Rasthali (Musa spp. AAB group). Biol Plant 37:178–181

    CAS  Google Scholar 

  • Gaoni Y, Mechoulam R (1964) Hashish. III. Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 86:1646–1647

    CAS  Google Scholar 

  • Ghosh R, Todd AR, Wilkinson S (1940) Cannabis indica. V. Synthesis of cannabinol. J Chem Soc 4:1393–1396

    Google Scholar 

  • Gilmore S, Peakall R, Robertson J (2003) Short tandem repeat (STR) DNA markers are hypervariable and informative in C. sativa: implications for forensic investigations. Forensic Sci Int 131:65–74

    PubMed  CAS  Google Scholar 

  • Grinspoon L, Bakalar JB (1993) Marihuana, the forbidden medicine. Yale University Press, New Haven

    Google Scholar 

  • Guindon J, Hohmann AG (2009) The endocannabinoid system and pain. CNS Neurol Disord Drug Targets 8:403–421

    PubMed  CAS  Google Scholar 

  • Hammond CT, Mahlberg PG (1977) Morphogenesis of capitate glandular hairs of Cannabis sativa (Cannabaceae). Amer J Bot 64:1023–1031

    Google Scholar 

  • Hao YJ, Deng XX (2003) Genetically stable regeneration of apple plants from slow growth. Plant Cell Tiss Org Cult 72:253–260

    CAS  Google Scholar 

  • Hemphill JK, Turner JC, Mahlberg PG (1980) Cannabinoid content of individual plant organs from different geographical strains of C. sativa L. J Nat Prod 43:112–122

    CAS  Google Scholar 

  • Hillig KW (2004) A chemotaxonomic analysis of terpenoid variation in cannabis. Biochem Syst Ecol 32:875–891

    CAS  Google Scholar 

  • Hillig KW (2005) Genetic evidence for speciation in Cannabis (Cannabaceae). Genet Resour Crop Evol 52:161–180

    CAS  Google Scholar 

  • Hillig KW, Mahlberg PG (2004) A chemotaxonomic analysis of cannabinoids variation in Cannabis (Cannabaceae). Am J Bot 91:966–975

    PubMed  CAS  Google Scholar 

  • Huetteman A, Preece EJ (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tiss Org Cult 33:105–119

    CAS  Google Scholar 

  • Jarvinen T, Pate DW, Laine K (2002) Cannabinoids in the treatment of glaucoma. Pharmacol Ther 95:203–220

    PubMed  CAS  Google Scholar 

  • Joshi P, Dhawan V (2007) Assessment of genetic fidelity of micropropagated Swertia chirayita plantlets by ISSR marker assay. Biol Plant 51(1):22–26

    CAS  Google Scholar 

  • Kajima M, Piraux M (1982) The biogenesis of cannabinoids in Cannabis sativa. Phytochemistry 21:67–69

    CAS  Google Scholar 

  • Kashyap V, Kumar S, Collonier C, Fusari F, Haircour R, Rotino GL, Sihachakr D, Rajam MV (2003) Biotechnology in eggplant. Sci Horticult 97(1):1–25

    CAS  Google Scholar 

  • Kriese U, Schumann E, Weber WE, Beyer M, Brühl L, Matthus B (2004) Oil content, tocopherol composition and fatty acid patterns of the seeds of 51 C. sativa L. genotypes. Euphytica 137:339–351

    CAS  Google Scholar 

  • Kumar S, Mangal M, Dhawan AK, Singh N (2011) Assessment of genetic fidelity of micropropagated plants of Simmondsia chinensis (Link) Schneider using RAPD and ISSR markers. Acta Pysiol Plant 33:2541–2545

    CAS  Google Scholar 

  • Kuznetsova OI, Ash OA, Gostimsky SA (2006) The effect of the duration of callus culture on the accumulation of genetic alternation in pea Pisum sativum L. Russ J Genet 42:555–562

    CAS  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Google Scholar 

  • Lata H, Bedir E, Hosick A, Ganzera M, Khan I, Moraes RM (2002) In vitro plant regeneration from leaf-derived callus of Cimicifuga racemosa. Planta Med 68:912–915

    PubMed  CAS  Google Scholar 

  • Lata H, Chandra S, Khan IA, ElSohly MA (2009a) Thidiazuron induced high frequency direct shoot organogenesis of C. sativa L. In vitro Cellular Dev Biology-Plant 45:12–19

    CAS  Google Scholar 

  • Lata H, Chandra S, Khan I, ElSohly MA, ElSohly MA (2009b) Propagation through Alginate Encapsulation of Axillary Buds of Cannabis sativa L.–an important medicinal plant. Physiol Mol Biol Plants 15(1):79–86

    CAS  Google Scholar 

  • Lata H, Chandra S, Techen N, Khan IA, ElSohly MA (2009c) Assessment of genetic stability of micropropagated plants of C. sativa L. by ISSR markers. Planta Med 76:97–100

    PubMed  Google Scholar 

  • Lata H, Moraes RM, Bertoni B, Pereira AMS (2009d) In vitro germplasm conservation of Podophyllum peltatum L. under slow growth conditions. In vitro Cell Dev Biol Plant 46:22–27

    Google Scholar 

  • Lata H, Chandra S, Khan IA, ElSohly MA (2010) High frequency plant regeneration from leaf derived callus of high Δ9-tetrahydrocannabinol yielding Cannabis sativa L. Planta Med 76:1629–1633

    PubMed  CAS  Google Scholar 

  • Lata H, Chandra S, Mehmedic Z, Khan IA, ElSohly MA (2011) Molecular analysis of genetic fidelity in Cannabis sativa L. plants grown from synthetic seeds following in vitro storage conditions. Biotechnol Lett 33:2503–2508

    PubMed  CAS  Google Scholar 

  • Lata H, Chandra S, Techen N, Khan IA, ElSohly MA (2012) In vitro germplasm conservation of high Δ9-tetrahydrocannabinol yielding elite clones of Cannabis sativa L. under slow growth conditions. Acta Physiologiae Plantarum 34(2):743–750

    CAS  Google Scholar 

  • Leroy X, Leon K, Charles G, Branchard M (2000) Cauliflower somatic embryogenesis and analysis of regenerants stability by ISSRs. Plant Cell Rep 19:1102–1107

    CAS  Google Scholar 

  • Liang YC, Huang CC, Hsu KS (2004) Therapeutic potential of cannabinoids in trigeminal neuralgia. Curr Drug Targets CNS Neurol Disord 3:507–514

    PubMed  CAS  Google Scholar 

  • Makriyannis A, Tian X, Guo J (2005) How lipophilic cannabinergic ligands reach their receptor sites. Prostaglandins Other Lipid Mediat 77:210–218

    PubMed  CAS  Google Scholar 

  • Mandal J, Patnaik S, Chand PK (2000) Alginate encapsulation of axillary buds of Ocimum americanum L. (hoary basil), O. basilicum L. (sweet basil), O. gratissimum L. (shrubby basil), and O. sanctum L. (sacred basil). In vitro Cell Dev Biol Plant 36:287–292

    CAS  Google Scholar 

  • Mandolino G, Ranalli P (1999) Advances in biotechnological approaches for hemp breeding and industry. In: Ranalli P (ed) Advances in Hemp research. Haworth Press, New York, pp 185–208

    Google Scholar 

  • Mandolino G, Carboni A, Forapani S, Faeti V, Ranalli P (1999) Identification of DNA markers linked to the male sex in dioecious hemp (C. sativa L.). Theor Appl Genet 98:86–92

    CAS  Google Scholar 

  • Mathur J, Ahuja PS, Lal N, Mathur AK (1989) Propagation of Valeriana wallichii DC using encapsulated apical and axial shoot buds. Plant Sci 60:111–116

    Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structures of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    PubMed  CAS  Google Scholar 

  • Mattes RD, Shaw LM, Eding-Owens J, Egelman K, ElSohly MA (1993) Bypassing the first pass effect for therapeutic use of cannabnoids. Pharmacol Biochem Behav 44:745–747

    PubMed  CAS  Google Scholar 

  • Mattes RD, Egelman K, Shaw LM, ElSohly MA (1994) Cannabinoids appetite stimulation. Pharmacol Biochem Behav 44:745–747

    Google Scholar 

  • Mechoulam R (1986) The pharmacohistory of Cannabis sativa. In: Mechoulam R (ed) Cannabinoids as therapeutic agents. CRC Press, Boca Raton, pp 1–19

    Google Scholar 

  • Mechoulam R, Ben-Shabat A (1999) From gan-zi-gun-nu to anandamide and 2-arachidonoylglycerol: the ongoing story of Cannabis. Nat Prod Rep 16:131–143

    PubMed  CAS  Google Scholar 

  • Mechoulam R, Gaoni Y (1967) Absolute configuration of Δ1-tetrahydrocannabinol, the major active constituent of hashish. Tetrahedron Lett 11:1109–1111

    Google Scholar 

  • Mechoulam R, Shvo Y (1963) Hashish. I. Structure of cannabidiol. Tetrahedron 19:2073–2078

    CAS  Google Scholar 

  • Mehmedic Z, Chandra S, Slade D, Denham H, Foster S, Patel AS, Ross SA, Khan IA, ElSohly MA (2010) Potency trends of Δ9-THC and other cannabinoids in confiscated cannabis preparations from 1993–2008. J Forensic Sci 55:1209–1217

    PubMed  CAS  Google Scholar 

  • Mendoza M, Mills DE, Lata H, Chandra S, ElSohly MA, Almirall J (2009) Genetic individualization of C. sativa by an STR multiplex. Anal Bioanal Chem 393:719–726

    PubMed  CAS  Google Scholar 

  • Mok MC, Mok DWS, Armstrong DJ, Shudo K, Isogai Y, Okamoto T (1982) Cytokinin activity of N-phenyl-N’-1,2,3-thiadiazol-5-ylurea (Thidiazuron). Phytochemistry 21:1509–1511

    CAS  Google Scholar 

  • Mouslech Z, Valla V (2009) Endocannabinoid system: an overview of its potential in current medical practice. Neuroendocr Lett 30:153–179

    CAS  Google Scholar 

  • Narula A, Kumar S, Srivastava PS (2007) Genetic fidelity of in vitro regenerants, encapsulation of shoot tips and high diosgenin content in Dioscorea bulbifera L., a potential alternative source of diosgenin. Biotechnol Lett 29:623–629

    PubMed  CAS  Google Scholar 

  • Parveen S, Shahzad A (2010) TDZ-induced high frequency shoot regeneration in Cassia sophera Linn. via cotyledonary node explants. Physiol Mol Biol Plants 16(2):201–206

    Google Scholar 

  • Pate D (1999) Anandamide structure-activity relationships and mechanisms of action on intraocular pressure in the normotensive rabbit model. PhD thesis, University of Kuopio, Kuopio, Finland

    Google Scholar 

  • Pathak H, Dhawan V (2011) ISSR assay for ascertaining genetic fidelity of micropropagated plants of apple rootstock Merton 793. In vitro Cell Dev Biol-Plant. doi:10.1007/s11627-011-9385-0

    Google Scholar 

  • Pattnaik S, Chand PK (2000) Morphogenic response of the alginate encapsulated axillary buds from in vitro shoot cultures of six mulberries. Plant Cell Tissue Organ Cult 64:177–185

    Google Scholar 

  • Pryce G, Baker D (2005) Emerging properties of cannabinoid medicines in management of multiple sclerosis. Trends Neurosci 28:272–276

    PubMed  CAS  Google Scholar 

  • Radwan MM, ElSohly MA, Slade D, Ahmed SA, Wilson L, El-Alfy AT, Khan IA, Ross SA (2008) Non-cannabinoid constituents from a high potency C. sativa variety. Phytochemistry 69:2627–2633

    PubMed  CAS  Google Scholar 

  • Raharjo TJ, Chang WT, Choi YH, Peltenburg-Looman AMG, Verpoorte R (2004) Olivetol as product of a polyketide synthase in Cannabis sativa L. Plant Sci 166:381–385

    CAS  Google Scholar 

  • Rani V, Parida A, Raina SN (1995) Random amplified polymorphic DNA (RAPD) markers for genetic analysis in micro-propagated plants of Populus deltoids Marsh. Plant Cell Rep 14:459–462

    CAS  Google Scholar 

  • Ray A, Bhattacharya S (2008) Storage and plant regeneration from encapsulated shoot tips of Rauvolfia serpentine-an effective way of conservation and mass propagation. S Afr J Bot 74:776–779

    CAS  Google Scholar 

  • Ross SA, ElSohly MA (1995) Constituents of C. sativa L. XXVIII. A review of the natural constituents: 1980–1994. J Pharm Sci 4:1–10

    CAS  Google Scholar 

  • Ross SA, ElSohly MA (1996) The volatile oil composition of fresh and air-dried buds of C. sativa L. J Nat Prod 59:49–51

    PubMed  CAS  Google Scholar 

  • Sakamoto K, Shimomura K, Komeda Y, Kamada H, Satoh S (1995) A male-associated DNA sequence in a dioecious plant, C. sativa L. Plant Cell Physiol 36:1549–1554

    PubMed  CAS  Google Scholar 

  • Sakamoto K, Abe T, Matsuyama T, Yoshida S, Ohmido N, Fukui K, Satoh S (2005) RAPD markers encoding retrotransposable elements are linked to the male sex in C. sativa L. Genome 48:931–936

    PubMed  CAS  Google Scholar 

  • Salvi ND, George L, Eapen S (2001) Plant regeneration from leaf base callus of turmeric and random amplified polymorphic DNA analysis of regenerated plants. Plant Cell Tiss Org Cult 66:113–119

    CAS  Google Scholar 

  • Shaik NM, Arha M, Nookaraju A, Gupta SK, Srivastava S, Yadav AK, Kulkarni PS, Abhilash OU, Vishwakarma RK, Singh S, Tatkare R, Chinnathambi K, Rawal SK, Khan BM (2009) Improved method of in vitro regeneration in Leucaena leucocephala—a leguminous pulpwood tree species. Physiol Mol Biol Plants 16(2):201–206

    Google Scholar 

  • Shoyama Y, Hirano H, Oda M, Somehara T, Nishioka I (1975) Cannabis. IX. Cannabichromevarin and cannabigerovarin, two new propyl homologs of cannabichromene and cannabigerol. Chem Pharm Bull 23:1894–1895

    CAS  Google Scholar 

  • Singh AK, Sharma M, Varshney R, Agarwal SS, Bansal KC (2006a) Plant regeneration from alginate to encapsulated shoot tips of Phyllanthus amarus Schum and Thonn, a medicinally important plant species. In vitro Cell Dev Biol Plant 42:109–113

    CAS  Google Scholar 

  • Singh AK, Varshney R, Sharma M, Agarwal SS, Bansal KC (2006b) Regeneration of plants from alginate to encapsulated shoot tips of Withania somnifera (L.) Dunal, a medicinally important plant species. J Plant Physiol 163:220–223

    PubMed  CAS  Google Scholar 

  • Sirikantaramas S, Taura F, Tanaka Y, Ishikawa Y, Morimoto S, Shoyama Y (2005) Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity is secreted into the storage cavity of the glandular trichomes. Plant Cell Physiol 46:1578–1582

    PubMed  CAS  Google Scholar 

  • Sirikantaramas S, Taura F, Morimoto S, Shoyama Y (2007) Recent Advances in Cannabis sativa Research: Biosynthetic Studies and Its Potential in Biotechnology. Curr Pharm Biotechnol 8:237–243

    PubMed  CAS  Google Scholar 

  • Slatkin NE (2007) Cannabinoids in the treatment of chemotherapy-induced nausea and vomiting: beyond prevention of acute emesis. J Support Oncol 5:1–9

    PubMed  CAS  Google Scholar 

  • Ślusarkiewicz-Jarzina A, Ponitka A, Kaczmarek Z (2005) Influence of cultivar, explant source and plant growth regulator on callus induction and plant regeneration of C. sativa L. Acta Biologica Cracoviensia Series Botanica 47:145–151

    Google Scholar 

  • Small E (1975a) American law and the species problem in cannabis: science and semantics. Bull Narc 27:1–20

    PubMed  CAS  Google Scholar 

  • Small E (1975b) Morphological variation of cannabis. Can J Bot 53:978–987

    Google Scholar 

  • Small E, Cronquist A (1976) A practical and natural taxonomy for cannabis. Taxon 25:405–435

    Google Scholar 

  • Small E, Marcus D (2002) Hemp: a new crop with new uses for North America. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 284–326

    Google Scholar 

  • Small E, Jui PY, Lefkovitch LP (1976) A numerical taxonomic analysis of cannabis with special reference to species delimitation. Syst Bot 1:67–84

    CAS  Google Scholar 

  • Taura F, Tanaka S, Taguchi C, Fukamizu T, Tanaka H, Shoyama Y, Morimoto S (2009) Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett 583:2061–2066

    PubMed  CAS  Google Scholar 

  • Techen N, Chandra S, Lata H, ElSohly MA, Khan IA (2010) Genetic identification of female C. sativa plants at early developmental stage. Planta Med 16:1938–1939

    Google Scholar 

  • Törjék O, Bucherna N, Kiss E, Homoki H, Finta-Korpelová Z, Bócsa I, Nagy I, Heszky LE (2002) Novel male-specific molecular markers (MADC5, MADC6) in hemp. Euphytica 127:209–218

    Google Scholar 

  • Turner CE, ElSohly MA, Boeren EG (1980) Constituents of C. sativa L. XVII. A review of the natural constituents. J Nat Prod 43:169–234

    PubMed  CAS  Google Scholar 

  • Valle JR, Vieira JEV, Aucélio JG, Valio IFM (1978) Influence of photoperiodism on cannabinoid content of C. sativa L. Bull Narc 30:67–68

    PubMed  CAS  Google Scholar 

  • Viveros MP, Marco EM (2007) Cannabinoids, anxiety and depression. Recent Prog Medicinal Plants 18:225–249

    CAS  Google Scholar 

  • Wang L, Jiang T, Gusfield D (2000) A more efficient approximation scheme for tree alignment. SIAM J Comput 30(1):283–299

    Google Scholar 

  • Withers LA (1986) In vitro approaches to the conservation of plant genetic resources. In: Withers LA, Alderson PG (eds) Plant tissue culture and its agriculture applications. Butterworths, London, pp 261–276

    Google Scholar 

  • Wood TB, Spivey WTN, Easterfield TH (1896) Charas: the resin of Indian hemp. J Chem Soc Trans 69:539–546

    CAS  Google Scholar 

  • Wood TB, Spivey WTN, Easterfield TH (1899) Cannabinol. Part I. J Chem Soc 75:20–36

    CAS  Google Scholar 

  • Zuardi AW (2006) History of cannabis as a medicine: a review. Brazilian J Psychiatry 28:153–157

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Institute on Drug Abuse (NIDA), National Institute of Health (NIH), Department of Health and Human Services, USA, Contract No. N01DA-10-7773.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Chandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chandra, S., Lata, H., Khan, I.A., ElSohly, M.A. (2013). The Role of Biotechnology in Cannabis sativa Propagation for the Production of Phytocannabinoids. In: Chandra, S., LATA, H., Varma, A. (eds) Biotechnology for Medicinal Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29974-2_5

Download citation

Publish with us

Policies and ethics