Skip to main content

Use of Metabolomics and Transcriptomics to Gain Insights into the Regulation and Biosynthesis of Medicinal Compounds: Hypericum as a Model

  • Chapter
  • First Online:
Biotechnology for Medicinal Plants

Abstract

Medicinal plants have been used in alternative medicine for thousands of years and produce many unique classes of compounds. These compounds have effects on human and cultured cells that include but are not limited to anti-viral, anti-bacterial, anti-depressive, and anti-oxidant properties. The levels of accumulation and the ratios of specialized metabolites are highly influenced by factors including genotype, natural variation due to biotic and abiotic cues, optimization of compounds, the intermediate chemicals within the pathways, sites of synthesis, and the biosynthetic genes dictating their synthesis. All these factors impact the quality of propagated material. This chapter gives an overview of (1) understanding the natural variation in bioactive compounds across different treatments and tissues; (2) an approach for finding putative biosynthetic genes utilizing transcriptomic and metabolomic technologies; and (3) the positive and negative effects on humans. These are illustrated with examples from the genus Hypericum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam P, Arigoni D, Bacher A, Eisenreich W (2002) Biosynthesis of Hyperforin in Hypericum perforatum. J Med Chem 45:4786–4793

    Article  PubMed  CAS  Google Scholar 

  • Axarlis S, Mentis A, Demetzos C, Mitaku S, Skaltsounis AL, Marselos M, Malamas M (1998) Antiviral in vitro activity of Hypericum perforatum L. extract on the human cytomegalovirus (HCMV). Phytother Res 12:507–511

    Article  Google Scholar 

  • Babka HL (2009) Acetyl-CoA in plant biology. Iowa State University, Iowa

    Google Scholar 

  • Bais HP, Vepachedu R, Lawrence CB, Stermitz FR, Vivanco JM (2003) Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s Wort (Hypericum perforatum L.). J Biol Chem 278(34):32413–32422

    Article  PubMed  CAS  Google Scholar 

  • Blakney GT, Hendrickson CL, Marshall AG (2011) Predator data station: a fast data acquisition system for advanced FT-ICR MS experiments. Int J Mass Spectrom 306:246–252

    Article  CAS  Google Scholar 

  • Blank M, Lavie G, Mandel M, Hazan S, Orenstein A, Meruelo D, Keisari Y (2004) Antimetastatic activity of the photodynamic agent hypericin in the dark. Int J Cancer 111:596–603

    Article  PubMed  CAS  Google Scholar 

  • Brechner ML, Albright LD, Weston LA (2011) Effects of UV-B on secondary metabolites of St. John’s Wort (Hypericum perforatum L.) grown in controlled environments. Photochem Photobiol 87:680–684

    Article  PubMed  CAS  Google Scholar 

  • Brenner R, Azbel V, Madhusoodanan S, Pawlowska M (2000) Comparison of an extract of Hypericum (LI 160) and sertraline in the treatment of depression: a double-blind, randomized pilot study. Clin Ther 22(4):411–419

    Article  PubMed  CAS  Google Scholar 

  • Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62(3):471–481

    Article  PubMed  CAS  Google Scholar 

  • Bϋlter KB, Bϋlter B (2002) Ontogenetic variation regarding hypericin and hyperforin levels in four accessions of Hypericum perforatum L. J Herbs Spices Med Plants 9(2&3):95–100

    Google Scholar 

  • Butterweck V, Schmidt M (2007) St John’s Wort: role of active compounds for its mechanism of action and efficacy. Wien Med Wochenschr 157:356–361

    Article  PubMed  Google Scholar 

  • Cakir A, Kordali S, Zengin H, Izumi S, Hirata T (2004) Composition and antifungal activity of essential oils isolated from Hypericum hyssopifolium and Hypericum heterophyllum. Flavour Frag J 19:62–68

    Article  CAS  Google Scholar 

  • Cha S, Zhang H, Ilarslan HI, Wurtele ES, Libuse B, Nikolau BJ, Yeung ES (2008) Direct profiling and imagining of plant metabolites in intact tissues by using colloidal graphite-assisted laser desorption ionization mass spectrometry. Plant J 55:348–360

    Article  PubMed  CAS  Google Scholar 

  • Ciccarelli D, Andreucci AC, Pagni AM (2001) The “black nodules” of Hypericum perforatum L. subsp. perforatum: morphological, anatomical, and histochemical studies during the course of ontogenesis. Israel J Plant Sci 49:33–40

    Google Scholar 

  • Couldwell WT, Surnock AA, Tobia AJ, Cabana BE, Stillerman WT, Forsyth PA, Appley AJ, Spence AM, Hinton DR, Chen TC (2011) A phase ½ study of orally administered synthetic hypericin for treatment of recurrent malignant gliomas. Cancer 117:4905–4915

    Article  PubMed  CAS  Google Scholar 

  • Crockett SL, Poller B, Tabanca N, Pferschy-Wenzig E, Kunert O, Wedge DE, Bucar F (2010) Bioactive xanthones from the roots of Hypericum perforatum (common St. John’s Wort). J Sci Food Agric 91:428–434

    Article  PubMed  Google Scholar 

  • Crupi R, Mazzon E, Marino A, La Spada G, Bramanti P, Battaglia F, Cuzzocrea S, Spina E (2011) Hypericum perforatum treatment: effect on behaviour and neurogenesis in a chronic stress model in mice. BMC Complement Altern Med 11(7):1–10

    Google Scholar 

  • De Clercq E (2000) Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Med Res Rev 20:323–349

    Article  PubMed  Google Scholar 

  • Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, DeWinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Solden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhoa P, Zhong F, Korlach J, Turner S (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138

    Article  PubMed  CAS  Google Scholar 

  • Einbond LS, Wu H, Su T, Chang T, Panjikaran M, Wang X, Goldberry S (2010) Digitoxin activates EGR1 and synergizes with paclitaxel on human breast cancer cells. J Carcinog 9:10–23

    Article  PubMed  Google Scholar 

  • Eisenberg DM, Davis RB, Ettner SL (1998) Trends in alternative medicine use in the United States, 1990–1997: results of a follow-up national survey. J Am Med Assoc 280:1569–1575

    Article  CAS  Google Scholar 

  • Emmett MR, White FM, Hendrickson CL, Shi SDH, Marshall AG (1998) Application of micro-electrospray liquid chromatography techniques to FT-ICR MS. J Am Soc Mass Spectrom 9(4):333–340

    Article  PubMed  CAS  Google Scholar 

  • Ernst E (2003) Hypericum: the genus Hypericum. Taylor & Francis CRC Press, London

    Google Scholar 

  • Fields P, Arnason J, Fucher R (1990) The spectral properties of Hypericum perforatum leaves: the implications for its photoactivated defences. Can J Bot 68:1166–1170

    Article  Google Scholar 

  • Fox E, Murphy RF, McCully CL, Adamson PC (2001) Plasma pharmacokinetics and cerebrospinal fluid penetration of hypericin in nonhuman primates. Cancer Chemother 47(1):41–44

    Article  CAS  Google Scholar 

  • Franklin G, Conceição LFR, Kombrink E, Dias ACP (2009) Xanthone biosynthesis in Hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress. Phytochemistry 70:60–68

    Article  PubMed  CAS  Google Scholar 

  • Galati EM, Contartese G, Miceli N, Taviano MF, Sdrafkakis V, Couladis M, Tzakou O, Lanuzza F (2008) Antiinflammatory and antioxidant activity of Hypericum rumeliacum Boiss. Subsp. apollinis (Boiss. & Heldr.) Robson & Strid methanol extract. Phytother Res 22(6):766–771

    Article  PubMed  CAS  Google Scholar 

  • Ganzera M, Zhao J, Khan IA (2002) Hypericum perforatum—chemical profiling and quantitative results of St. John’s Wort products by an improved high-performance liquid chromatography method. J Pharm Sci 91(3):623–630

    Article  PubMed  CAS  Google Scholar 

  • Germ M, Stibilj V, Kreft S, Gaberščik A, Kreft I (2010) Flavonoid, tannin, and hypericin concentrations in the leaves of St. John’s Wort (Hypericum perforatum L.) are affected by UV-B radiation levels. Food Chem 122:471–474

    Article  CAS  Google Scholar 

  • Hammer KDP, Hillwig ML, Solco AKS, Dixon PM, Delate K, Murphy PA, Wurtele ES, Birt DF (2007) Inhibition of prostaglandin E2 production by anti-inflammatory Hypericum perforatum extracts and constituents in RAW264.7 mouse macrophage cells. J Agric Food Chem 55:7323–7331

    Article  PubMed  CAS  Google Scholar 

  • Hammer KDP, Yum M, Dixon PM, Birt DF (2010) Identification of JAK-STAT pathways as important for the anti-inflammatory activity of a Hypericum perforatum fraction and bioactive constituents in RAW 264.7 mouse macrophages. Phytochemistry 71:716–725

    Article  PubMed  CAS  Google Scholar 

  • Hillwig ML, Hammer KD, Birt DF, Wurtele ES (2008) Characterizing the metabolite fingerprint and anti-inflammatory activity of Hypericum gentianoides. J Agric Food Chem 56(12):4359–4366

    Article  PubMed  CAS  Google Scholar 

  • Holtrup F, Bauer A, Fellenberg K, Hilger RA, Wink M, Hoheisel J (2011) Microarray analysis of nemorosone-induced cytotoxic effects on pancreatic cancer cells reveals activation of the unfolding protein response (UPR). Br J Pharmacol 162(5):1045–1059

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro K, Yamaki M, Kashihara M, Takagi S (1987) Saroaspidin A, B, and C: additional antibiotic compounds from Hypericum japonicum. Planta Med 53(5):415–417

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Wong WH (2009) Statistical inferences for isoform expression in RNA-Seq. Bioinformatics 25(8):1026–1032

    Article  PubMed  CAS  Google Scholar 

  • Johnson H, Wong SCC, Simpson DM, Beynon RJ, Gaskell SJ (2008) Protein quantification by selective isolation and fragmentation of isotopic pairs using FT-ICR MS. J Am Soc Mass Spectrom 19:973–977

    Article  PubMed  CAS  Google Scholar 

  • Jungke P, Ostrow G, Li JL, Norton S, Nieber K, Kelber O, Butterweck V (2011) Profiling of hypothalamic and hippocampal gene expression in chronically stressed rats treated with St. John’s Wort extract (STW 3-VI) and fluoxetine. Psychopharmacology 213(4):757–772

    Article  PubMed  CAS  Google Scholar 

  • Karppinen K, György Z, Kauppinen M, Tolonen A, Jalonen J, Neubauer P, Hohtola A, Häggman H (2006) In vitro propagation of Hypericum perforatum L. and accumulation of hypericins, pseudohypericins, and phloroglucinols. Propag Ornam Plants 6(4):170–179

    Google Scholar 

  • Karppinen K, Hokkanen J, Mattila S, Neubauer P, Hohtola A (2008) Octaketide-producing type III polyketide synthase from Hypericum perforatum is expressed in dark glands accumulating hypericins. FEBS J 275(17):4329–4342

    Article  PubMed  CAS  Google Scholar 

  • Kasper S, Volz HP, Moller HJ, Dienel A, Kieser M (2008) Continuation and long-term maintenance treatment with hypericum extract WS5570 after recovery from an acute episode of moderate depression—a double-blind, randomized, placebo controlled long-term trial. Eur Neuropsychopharmacol 18:803–813

    Article  PubMed  CAS  Google Scholar 

  • Kirakosyan A, Sirvent TM, Gibson DM, Kaufman PB (2004) The production of hypericins and hyperforin by in vitro cultures of St. John’s Wort (Hypericum perforatum). Biotechnol Appl Biochem 39:71–81

    Article  PubMed  CAS  Google Scholar 

  • Košuth J, Smelcerovic A, Borsch T, Zuehlke S, Karppinen K, Spiteller M, Hohtola A, Čellárová E (2011) The Hyp-1 gene is not a limiting factor for hypericin biosynthesis in the genus Hypericum. Funct Plant Biol 38:35–43

    Article  Google Scholar 

  • Liao Z, Chen M, Tan F, Sun X, Tang K (2004) Micropropagation of endangered Chinese aloe. Plant Cell Tissue Org 76(1):83–86

    Article  CAS  Google Scholar 

  • Liu XN, Zhang XQ, Zhang SX, Sun JS (2007a) Regulation of metabolite production by precursors and elicitors in liquid cultures of Hypericum perforatum. Plant Cell Tissue Organ Cult 91:1–7

    Article  CAS  Google Scholar 

  • Liu XN, Zhang XQ, Sun JS (2007b) Effects of cytokinins and elicitors on the production of hypericins and hyperforin metabolites in Hypericum sampsonii and Hypericum perforatum. Plant Growth Regul 53:207–214

    Article  CAS  Google Scholar 

  • Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Human Genet 9:387–402

    Article  CAS  Google Scholar 

  • Martarelli D, Martarelli B, Pediconi D, Nabissi MI, Perfumi M, Pompei P (2004) Hypericum perforatum methanolic extract inhibits growth of human prostatic carcinoma cell line orthotopically implanted in nude mice. Cancer Lett 210(1):27–33

    Article  PubMed  CAS  Google Scholar 

  • Mennini T, Gobbi M (2004) The antidepressant mechanism of Hypericum perforatum. Life Sci 75:1021–1027

    Article  PubMed  CAS  Google Scholar 

  • Meruelo D, Lavie G, Lavie D (1988) Therapeutic agents with dramatic antiretroviral activity and little toxicity at effective doses: aromatic polycyclic diones hypericin and pseudohypericin. Proc Natl Acad Sci USA 85(14):5230–5234

    Article  PubMed  CAS  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46

    Article  PubMed  CAS  Google Scholar 

  • Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne JK, Willis BL, Matz MV (2009) Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFIx. BMC Genomics 10:219–238

    Article  PubMed  Google Scholar 

  • Moore LB, Goodwin B, Jones SA, Wisely GB, Serabjit-Singh CJ, Willson TM, Collins J, Kliewer SA (2000) St. John’s Wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc Natl Acad Sci USA 97(13):7500–7502

    Article  PubMed  CAS  Google Scholar 

  • Murata J, Roepke J, Gordon H, De Luca V (2008) The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell 20:524–542

    Article  PubMed  CAS  Google Scholar 

  • Nalawade SM, Tsay HS (2004) In vitro propagation of some important Chinese medicinal plants and their sustainable usage. In Vitro Cell Dev Biol Plant 40(2):143–154

    Article  Google Scholar 

  • Nikolau BJ, Wurtele ES (2007) Concepts in plant metabolomics. Springer, Heidelberg, pp 145–158

    Google Scholar 

  • Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12(2):87–98

    Article  PubMed  CAS  Google Scholar 

  • Peeva-Naumovska V, Panovski N, Grdanovska T, Fredro-Kumbaradzi E (2010) Formulations of St. John’s Wort oil ointment and evaluation of its antibacterial effect. AMAPSEEC. www.amapseec.org/cmapseec.1/Papers/papp067.htm. Accessed 15 June 2011

  • Perry NB, Van Klink JW, Burgess EJ, Parmenter GA (1997) Alkamide levels in Echinacea purpurea: a rapid analytical method revealing differences among roots, rhizomes, stems, leaves and flowers. Planta Med 63(1):58–62

    Article  PubMed  CAS  Google Scholar 

  • Rabanal RM, Arias A, Prado B, Hernández-Pérez M, Sánchez-Mateo CC (2002) Antimicrobial studies on three species of Hypericum from the Canary Islands. J Ethnopharmacol 81:287–292

    Article  PubMed  CAS  Google Scholar 

  • Richman DD (1991) Antiviral therapy of HIV infection. Annu Rev Med 42:69–90

    Article  PubMed  CAS  Google Scholar 

  • Saddiqe Z, Naeem I, Maimoona A (2010) A review of the antibacterial activity of Hypericum perforatum L. J Ethnopharmacol 131:511–521

    Article  PubMed  CAS  Google Scholar 

  • Schempp CM, Kirkin V, Simon-Haarhaus B, Kersten A, Kiss J, Termeer CC, Glib B, Kaufmann T, Borner C, Sleeman JP, Simon JC (2002a) Inhibition of tumour cell growth by hyperforin, a novel anticancer drug from St. John’s Wort that acts by induction of apoptosis. Oncogene 21(8):1242–1250

    Article  PubMed  CAS  Google Scholar 

  • Schempp CM, Simon-Haarhaus B, Simon JC (2002b) Phototoxic and apoptosis-inducing capacity of pseudohypericin. Planta Med 68(2):171–173

    Article  PubMed  CAS  Google Scholar 

  • Schempp CM, Windeck T, Hezel S, Simon JC (2003) Topical treatment of atopic dermatitis with St. John’s Wort cream—a randomized, placebo controlled, double blind half-side comparison. Phytomed Suppl 4:31–37

    Article  Google Scholar 

  • Schmitt LA, Liu Y, Murphy PA, Birt DF (2006) Evaluation of the light-sensitive cytotoxicity of Hypericum perforatum extracts, fractions, and pure compounds. J Agric Food Chem 54:2681–2890

    Article  Google Scholar 

  • Schroeder C, Tank J, Goldstein DS, Stoeter M, Haertter S, Luft FC, Jordan J (2004) Influence of St. John’s Wort on catecholamine turnover and cardiovascular regulation in humans. Clin Pharmacol Ther 76(5):480–489

    Article  PubMed  CAS  Google Scholar 

  • Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5(1):16–18

    Article  PubMed  CAS  Google Scholar 

  • Tachjian A, Maria V, Jahangir A (2010) Use of herbal products and potential interactions in patients with cardiovascular diseases. J Am Coll Cordiol 55(6):515–525

    Article  Google Scholar 

  • Tatsis EC, Boeren S, Exarchou V, Troganis AN, Vervoort J, Gerothanassis IP (2007) Identification of the major constituents of Hypericum perforatum by LC/SPE/NMR and/or LC/MS. Phytochemistry 68:383–393

    Article  PubMed  CAS  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  PubMed  CAS  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  PubMed  CAS  Google Scholar 

  • Traynor NJ, Beattie PE, Ibbotson SH, Moseley H, Ferguson J, Woods JA (2005) Photogenotoxicity of hypericin in HaCaT keratinocytes: implications for St. John’s Wort supplements and high dose UVA-1 therapy. Toxicol Lett 158:220–224

    Article  PubMed  CAS  Google Scholar 

  • Vanderbogaerde AL, Kamuhabwa A, Delaey E, Himpens BE, Merlevede WJ, DeWitte PA (1998) Photocytotoxic effect of pseudohypericin versus hypericin. J Photochem Photobiol B Biol 45(2–3):87–94

    Article  Google Scholar 

  • Yang C, Chen M, Zeng L, Zhang L, Liu X, Lan X, Tang K, Liao Z (2011) Improvement of tropane alkaloids production in hairy root cultures of Atropa belladonna by overexpressing pmt and h6h genes. Plant Omics 4(1):29–33

    CAS  Google Scholar 

  • Zofou D, Kowa TK, Wabo HK, Ngemenya MN, Tane P, Titanji VPK (2011) Hypericum lanceolatum (Hypericaceae) as a potential source of new anti-malarial agents: a bioassay-guided fractionation of the stem bark. Malar J 10:167

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This publication was made possible in part by grant 9P50AT004155-06 from National Center for Complementary and Alternative Medicine and Office of Dietary Supplements, and grant NIGM-99511 from National Institute of General Medical Sciences, National Institutes of Health, its contents are solely the responsibility of the authors; and by the Genetics Program, Iowa State University (to MCC). We thank Dr. Heather Babka, Iowa State University, for training MC in H. gentianoides biology, Dr. Robin Buell and Dr. Elsa Gongora Castillo, Michigan State University, for insightful discussions into RNA-seq technologies. We are grateful to Dr. Mark Wiederlichtner for helpful discussions and for defined accession seeds of H. gentianoides (Ames 27729 (http://www.ars-grin.gov/cgi-bin/npgs/acc/display.pl?1668188)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eve Syrkin Wurtele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crispin, M.C., Wurtele, E.S. (2013). Use of Metabolomics and Transcriptomics to Gain Insights into the Regulation and Biosynthesis of Medicinal Compounds: Hypericum as a Model. In: Chandra, S., LATA, H., Varma, A. (eds) Biotechnology for Medicinal Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29974-2_17

Download citation

Publish with us

Policies and ethics