Skip to main content

Jasmonate-Responsive Transcription Factors: New Tools for Metabolic Engineering and Gene Discovery

  • Chapter
  • First Online:
Biotechnology for Medicinal Plants

Abstract

Transcription factors that regulate plant secondary metabolism are valuable tools for metabolic engineering and gene discovery. Related ERF-family transcription factors are required for jasmonate-inducible alkaloid biosynthesis in tobacco (Nicotiana tabacum) and periwinkle (Catharantus roseus). Transgenic manipulation of these ERF genes alters the expression of structural genes involved in the biosynthesis and transport of alkaloids, resulting in stimulation or inhibition of alkaloid accumulation. Novel enzymes and transporters can be identified by analyzing the expression profiles of genes that respond to these master regulators. The conserved jasmonate-responsive transcription factor MYC2 regulates the expression of alkaloid-specific ERF genes, thus placing alkaloid biosynthesis under the control of the jasmonate signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baldwin IT (1989) Mechanism of damage-induced alkaloid production in wild tobacco. J Chem Ecol 15:1661–1680

    Article  CAS  Google Scholar 

  • Baldwin IT (1998) Jasmonate-induced responses are costly but benefit plants under attacks in native populations. Proc Natl Acad Sci USA 95:8113–8118

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT, Scmelz EA, Ohnmeiss TE (1994) Wound-induced changes in root and shoot jasmonic acid pools correlated with induced nicotine synthesis in Nicotiana sylvestris Spegazzini and Comes. J Chem Eco 20:2139–2157

    Article  CAS  Google Scholar 

  • Blechert S, Brodschelm W, Hölder S, Kammerer L et al (1995) The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proc Natl Acad Sci USA 92:4099–4105

    Article  PubMed  CAS  Google Scholar 

  • Borevitz JO, Xia Y, Blount J, Dixon RA et al (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2394

    PubMed  CAS  Google Scholar 

  • Broun P (2004) Transcription factors as tools for metabolic engineering in plants. Curr Opin Plant Biol 7:202–209

    Article  PubMed  CAS  Google Scholar 

  • Browse J (2009) Jasmonate passes muster: a receptor and targets for the defense hormone. Ann Rev Plant Biol 60:183–205

    Article  CAS  Google Scholar 

  • Caretto S, Quarta A, Durante M, Nisi R et al (2011) Methyl jasmonate and miconazole differently affect arteminisin production and gene expression in Artemisia annua suspension cultures. Plant Biol (Stuttg) 13:51–58

    Article  CAS  Google Scholar 

  • Chini A, Fonseca S, Chico JM, Fernández-Calvo P et al (2009) The ZIM domain mediate homo- and heteromeric interactions between Arabidopsis JAZ proteins. Plant J 59:77–78

    Article  PubMed  CAS  Google Scholar 

  • Chini A, Fonseca S, Fernández G, Adie B et al (2007) The JAZ family of repressors is the missing link in jasmonate signaling. Nature 448:666–671

    Article  PubMed  CAS  Google Scholar 

  • Clarkson JJ, Lim KY, Kovarik A, Chase MW et al (2005) Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol 168:241–252

    Article  PubMed  CAS  Google Scholar 

  • De Boer K, Lye JC, Aiken CD, Su AK et al (2009) The A622 gene in Nicotiana glauca (tree tobacco): Evidence for a functional role in pyridine alkaloid synthesis. Plant Mol Biol 69:299–312

    Article  Google Scholar 

  • De Boer K, Tileman S, Pauwels L, Bossche RV et al (2011) APETALA2/ETHYENE RESPONSE FACTOR and basic helix-loop-helix transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. Plant J 66:1053–1065

    Article  PubMed  Google Scholar 

  • De Carvalho LPS, Zhao H, Dickinson CE, Arango NM et al (2010) Activity-based metabolomic profiling of enzymatic function: identification of Rv1248c as a mycobacterial 2-hydroxy-3-oxoadipate synthase. Chem Biol 17:323–332

    Article  PubMed  Google Scholar 

  • De Luca V (2011) Monoterpenoid indole alkaloid biosynthesis. In: Ashihara H, Crozier A, Komamine A (eds) Plant metabolism and biotechnology. Wiley, New York, pp 263–291

    Chapter  Google Scholar 

  • De Luca V, Marineau C, Brisson N (1989) Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase. Proc Natl Acad Sci USA 86:2582–2586

    Article  PubMed  Google Scholar 

  • De Sutter V, Vanderhaeghen R, Tilleman S, Lammertyn F et al (2005) Exploration of jasmonate signalling via automated and standardized transient expression assays in tobacco cells. Plant J 44:1065–1076

    Article  PubMed  Google Scholar 

  • Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA et al (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19:2225–2245

    Article  PubMed  CAS  Google Scholar 

  • Endt DV, Silva MS, Kijne JW, Pasquali G et al (2007) Identification of a bipartite jasmonate-responsive promoter element in the Catharanthus roseus ORCA3 transcription factor gene that interacts specifically with AT-hook DNA-binding proteins. Plant Physiol 144:1680–1689

    Article  Google Scholar 

  • Fernández-Calvo P, Chini A, Fern ández-Barbero G, Chico J.M et al (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–715

    Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B et al (2008) (+)-7-iso-Jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350

    Article  Google Scholar 

  • Fonseca S, Chico JM, Solano R (2009) The jasmonate pathway: the ligand, the receptor and the core signaling module. Curr Opin Plant Biol 12:539–547

    Article  PubMed  CAS  Google Scholar 

  • Goossens A, Häkkinen ST, Laakso I, Seppänen-Laakso T et al (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA 100:8595–8600

    Article  PubMed  CAS  Google Scholar 

  • Grotewold E (2008) Transcription factors for predictive plant metabolic engineering: are we there yet? Curr Opin Biotechnol 19:138–144

    Article  PubMed  CAS  Google Scholar 

  • Grotewold E, Chamberlin M, Snook M, Siame B et al (1998) Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell 10:721–740

    PubMed  CAS  Google Scholar 

  • Gundlach H, Müller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89:2389–2393

    Article  PubMed  CAS  Google Scholar 

  • Hibi N, Higashiguchi S, Yamada Y, Hashimoto T (1994) Gene expression in tobacco low-nicotine mutant. Plant Cell 6:723–735

    PubMed  CAS  Google Scholar 

  • Hichri I, Barrieu F, Bogs J, Kappel C et al (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62:2465–2483

    Article  PubMed  CAS  Google Scholar 

  • Hirai MY, Sugiyama K, Sawada Y, Tohge T et al (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci USA 104:6478–6483

    Article  PubMed  CAS  Google Scholar 

  • Imanishi S, Hashizume K, Nakakita M, Kojima H et al (1998) Differential induction of methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Mol Biol 38:1101–1111

    Article  PubMed  CAS  Google Scholar 

  • Kajikawa M, Hirai N, Hashimoto T (2009) A PIP-family protein is required for biosynthesis of tobacco alkaloids. Plant Mol Biol 69:287–298

    Article  PubMed  CAS  Google Scholar 

  • Kajikawa M, Shoji T, Katoh A, Hashimoto T (2011) Vacuole-localized berberine bridge enzyme-like proteins are required for a late step of nicotine biosynthesis in tobacco. Plant Physiol 155:2010–2022

    Article  PubMed  CAS  Google Scholar 

  • Kannangara R, Branigan C, Liu Y, Penfield T et al (2007) The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell 19:1278–1294

    Article  PubMed  CAS  Google Scholar 

  • Katoh A, Shoji T, Hashimoto T (2007) Molecular cloning of N-methylputrescine oxidase from tobacco. Plant Cell Physiol 48:550–554

    Article  PubMed  CAS  Google Scholar 

  • Katoh A, Uenohara K, Akita M, Hashimoto T (2006) Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid. Plant Physiol 141:851–857

    Article  PubMed  CAS  Google Scholar 

  • Kutchan TM, Hampp N, Lottspeich F, Beyreuther K et al (1988) The cDNA clone for strictosidine synthase from Rauvolfia serpentine. DNA sequence determination and expression in Esherichia coli. FEBS Lett 237:40–44

    Article  PubMed  CAS  Google Scholar 

  • Legg PG, Collins GB (1971) Inheritance of percent total alkaloids in Nicotiana tabacum L. II. genetic effects of two loci in Burley21 X LA Burley21 populations. Can J Genet Cytol 13:287–291

    Google Scholar 

  • Lloyd AM, Walbot V, Davis RW (1992) Arabidopsis and Nicotiana antocyanin production activated by maize regulator R and C1. Science 258: 1773–1775

    Google Scholar 

  • McKnight TD, Roessner CA, Devagupta R, Scott AI et al (1990) Nucleotide sequence of a cDNA encoding the vacuolar protein strictosidine synthase from Catharanthus roseus. Nucleic Acids Res 18:4939

    Article  PubMed  CAS  Google Scholar 

  • Melotto M, Mecey C, Niu Y, Chung HS et al (2008) A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein. Plant J 55:979–988

    Article  PubMed  CAS  Google Scholar 

  • Menke FLH, Parchmann S, Müller MJ, Kijne JW et al (1999a) Involvement of the octadecanoid pathway and protein phosphorylation in fungal elicitor-induced expression of terpenoid indole alkaloid biosynthetic genes in Catharanthus roseus. Plant Physiol 119:1289–1296

    Article  PubMed  CAS  Google Scholar 

  • Menke FLH, Champion A, Kijne JW, Memelink J (1999b) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. Embo J 18:4455–4463

    Article  PubMed  CAS  Google Scholar 

  • Montiel G, Zarei A, Körbes AP, Memelink J (2011) The jasmonate-responsive element from the ORCA3 promoter from Catharanthus roseus is active in Arabidopsis and is controlled by the transcription factor AtMYC2. Plant Cell Physiol 52:578–587

    Article  PubMed  CAS  Google Scholar 

  • Morita M, Shitan N, Sawada K, Van Montagu MCE et al (2009) Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. Proc Natl Acad Sci USA 106:2447–2452

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  PubMed  CAS  Google Scholar 

  • O’Connor SE, Maresh JJ (2006) Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat Prod Rep 23:532–547

    Article  PubMed  Google Scholar 

  • Oki H, Hashimoto T (2004) Jasmonate-responsive regions in a Nicotiana sylvestris PMT gene involved in nicotine biosynthesis. Plant Biotechnol 21:269–274

    Article  CAS  Google Scholar 

  • Paschold A, Hailtschke R, Baldwin IT (2007) Co(i)-ordinating defenses: NaCOI1 mediates herbivore-induced resistance in Nicotiana attenuate and reveals the role of herbivore movement in avoiding defenses. Plant J 51:79–91

    Article  PubMed  CAS  Google Scholar 

  • Pauw B, Hilliou FAO, Martin VS, Chatel G et al (2004) Zinc finger protein act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus. J Biol Chem 279:52940–52948

    Article  PubMed  CAS  Google Scholar 

  • Pauwels L, Barbero GF, Geerinck J, Tilleman S et al (2010) NINJA connects the co-repressor TOPLESS to jasmonate signaling. Nature 464:788–791

    Article  PubMed  CAS  Google Scholar 

  • Peebles CAM, Hughes EH, Shanks JV, San KY (2009) Transcriptional response of the terpenoid alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Metabolic Eng 11:76–86

    Article  CAS  Google Scholar 

  • Pré M, Sibéril Y, Memelink J, Champion A et al (2000) Isolation by the yeast one-hybrid system of cDNAs encoding transcription factors that bind to the G-box element of the strictosidine synthase gene promoter from Catharanthus roseus. Int J Biochrom 5:224–229

    Google Scholar 

  • Qi T, Song S, Ren Q, Wu D et al (2011) The Jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23:1795–1814

    Article  PubMed  CAS  Google Scholar 

  • Sheard JB, Tan X, Mao H, Withers J et al (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405

    Article  PubMed  CAS  Google Scholar 

  • Shoji T, Hashimoto T (2011a) Nicotine biosynthesis. In: Ashihara H, Crozier A, Komamine A (eds) Plant metabolism and biotechnology. Wiley, New York, pp 191–216

    Chapter  Google Scholar 

  • Shoji T, Hashimoto T (2011b) Tobacco MYC2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes. Plant Cell Physiol 52:1117–1130

    Article  PubMed  CAS  Google Scholar 

  • Shoji T, Hashimoto T (2011c) Recruitment of a duplicated primary metabolism gene into the nicotine biosynthesis regulon in tobacco. Plant J 67:949–959

    Article  PubMed  CAS  Google Scholar 

  • Shoji T, Inai K, Yazaki Y, Sato Y et al (2009) Multidrug and toxic compound extrusion-type transporters implicated in vacuolar sequestration of nicotine in tobacco roots. Plant Physiol 149:708–718

    Article  PubMed  CAS  Google Scholar 

  • Shoji T, Kajikawa M, Hashimoto T (2010) Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. Plant Cell 22:3390–3409

    Article  PubMed  CAS  Google Scholar 

  • Shoji T, Ogawa T, Hashimoto T (2008) Jasmonate-induced nicotine formation in tobacco is mediated by tobacco COI1 and JAZ genes. Plant Cell Physiol 49:1003–1012

    Article  PubMed  CAS  Google Scholar 

  • Shoji T, Yamada Y, Hashimoto T (2000) Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris. Plant Cell Physiol 41:831–839

    Article  PubMed  CAS  Google Scholar 

  • Sibéril Y, Benhamron S, Memelink J, Giglioli-Guivarc’h N et al (2001) Catharanthus roseus G-box binding factors 1 and 2 act as repressors of strictosidine synthase gene expression in cell culture. Plant Mol Biol 45:427–440

    Article  Google Scholar 

  • Sinclair SJ, Murphy PJ, Birch CD, Hamill D (2000) Molecular characterization of quinolinate phosphoribosyltransferase (QPRTase) in Nicotiana. Plant Mol Biol 44:603–617

    Article  PubMed  CAS  Google Scholar 

  • Song S, Qi T, Huang H, Ren Q et al (2011) The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development. Plant Cell 23:1000–1013

    Article  PubMed  CAS  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y et al (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665

    Article  PubMed  CAS  Google Scholar 

  • Todd AT, Liu E, Polvi SL, Pammett RT et al (2010) A functional genomic screen identifies diverse transcription factors that regulate alkaloid biosynthesisin Nicotiana benthamiana. Plant J 62:589–600

    Article  PubMed  CAS  Google Scholar 

  • van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    Article  PubMed  Google Scholar 

  • van der Fits L, Memelink J (2001) The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J 25:43–53

    Article  PubMed  Google Scholar 

  • van der Fits L, Zhang H, Menke FLH, Deneka M et al (2000) A Catharanthus roseus BPF-1 homologue interact an elicitor-responsive region of the secondary metabolite biosynthetic gene Str and is induced by elicitor via a JA-independent signal transduction pathway. Plant Mol Biol 44:675–685

    Article  PubMed  Google Scholar 

  • Verdonk JC, Haring MA, van Tunen AJ, Schuurink RC (2005) ODORANT1 regulates fragrance biosynthesis in petunia. Plant Cell 17:1612–1624

    Article  PubMed  CAS  Google Scholar 

  • Wang CT, Liu H, Gao XS, Zhang HX (2010) Overexpression of G10H and ORCA3 in the hairy roots of Catharanthus roseus improves catharanthine production. Plant Cell Rep 29:887–894

    Article  PubMed  CAS  Google Scholar 

  • Xu B, Tinko MP (2004) Methyl jasmonate induced expression of the tobacco putrescine N-methyltransferase genes requires both G-box and GCC-motif elements. Plant Mol Biol 55:743–761

    Article  PubMed  CAS  Google Scholar 

  • Yukimune Y, Tabata H, Higashi Y, Hara Y (1996) Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nat Biotechnol 14:1129–1132

    Article  PubMed  CAS  Google Scholar 

  • Yun DJ, Hashimoto T, Yamada Y (1992) Metabolic engineering of medicinal plants: Transgenic Atropa belladonna with an improved alkaloid composition. Proc Natl Acad Sci USA 89:11799–11803

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Hedhili S, Montiel G, Zhang Y et al (2011) The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes regulating alkaloid biosynthesis in Catharanthus roseus. Plant J 67:61–71

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tsubasa Shoji or Takashi Hashimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shoji, T., Hashimoto, T. (2013). Jasmonate-Responsive Transcription Factors: New Tools for Metabolic Engineering and Gene Discovery. In: Chandra, S., LATA, H., Varma, A. (eds) Biotechnology for Medicinal Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29974-2_15

Download citation

Publish with us

Policies and ethics