Skip to main content

Multi-Task Reinforcement Learning: Shaping and Feature Selection

  • Conference paper
Recent Advances in Reinforcement Learning (EWRL 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7188))

Included in the following conference series:

Abstract

Shaping functions can be used in multi-task reinforcement learning (RL) to incorporate knowledge from previously experienced source tasks to speed up learning on a new target task. Earlier work has not clearly motivated choices for the shaping function. This paper discusses and empirically compares several alternatives, and demonstrates that the most intuive one may not always be the best option. In addition, we extend previous work on identifying good representations for the value and shaping functions, and show that selecting the right representation results in improved generalization over tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asmuth, J., Littman, M.L., Zinkov, R.: Potential-based shaping in model-based reinforcement learning. In: Proceedings of the 23rd AAAI Conference on Artificial Intelligence, pp. 604–609. The AAAI Press (2008)

    Google Scholar 

  2. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  3. Elfwing, S., Uchibe, E., Doya, K., Christensen, H.I.: Co-evolution of shaping: Rewards and meta-parameters in reinforcement learning. Adaptive Behavior 16(6), 400–412 (2008)

    Article  Google Scholar 

  4. Hachiya, H., Sugiyama, M.: Feature Selection for Reinforcement Learning: Evaluating Implicit State-Reward Dependency via Conditional Mutual Information. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS, vol. 6321, pp. 474–489. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Jong, N.K., Stone, P.: State abstraction discovery from irrelevant state variables. In: IJCAI 2005 (2005)

    Google Scholar 

  6. Konidaris, G.D., Barto, A.G.: Autonomous shaping: Knowledge transfer in reinforcement learning. In: Proc. 23rd International Conference on Machine Learning, pp. 489–496 (2006)

    Google Scholar 

  7. Lazaric, A., Ghavamzadeh, M.: Bayesian multi-task reinforcement learning. In: ICML, pp. 599–606 (2010)

    Google Scholar 

  8. Li, L., Walsh, T.J., Littman, M.L.: Towards a unified theory of state abstraction for MDPs. In: Aritificial Intelligence and Mathematics (2006)

    Google Scholar 

  9. Mahadevan, S.: Representation discovery in sequential decision making. In: AAAI (2010)

    Google Scholar 

  10. Ng, A.Y., Harada, D., Russell, S.: Policy invariance under reward transformations: Theory and application to reward shaping. In: Proc. 16th International Conference on Machine Learning (1999)

    Google Scholar 

  11. Parr, R., Li, L., Taylor, G., Painter-Wakefield, C., Littman, M.L.: An analysis of linear models, linear value-function approximation, and feature selection for reinforcement learning. In: ICML, pp. 752–759 (2008)

    Google Scholar 

  12. Petrik, M., Taylor, G., Parr, R., Zilberstein, S.: Feature selection using regularization in approximate linear programs for Markov decision processes. In: ICML, pp. 871–878 (2010)

    Google Scholar 

  13. Singh, S., Lewis, R.L., Barto, A.G.: Where do rewards come from? In: Proc. 31st Annual Conference of the Cognitive Science Society, pp. 2601–2606 (2009)

    Google Scholar 

  14. Snel, M., Whiteson, S.: Multi-task evolutionary shaping without pre-specified representations. In: Genetic and Evolutionary Computation Conference, GECCO 2010 (2010)

    Google Scholar 

  15. Sorg, J., Singh, S.: Transfer via soft homomorphisms. In: Proc. 8th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2009), pp. 741–748 (2009)

    Google Scholar 

  16. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press (1998)

    Google Scholar 

  17. Tanaka, F., Yamamura, M.: Multitask reinforcement learning on the distribution of MDPs. In: Proc. 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA 2003), pp. 1108–1113 (2003)

    Google Scholar 

  18. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: A survey. Journal of Machine Learning Research 10(1), 1633–1685 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Walsh, T.J., Li, L., Littman, M.L.: Transferring state abstractions between MDPs. In: ICML 2006 Workshop on Structural Knowledge Transfer for Machine Learning (2006)

    Google Scholar 

  20. Wiewiora, E., Cottrell, G., Elkan, C.: Principled methods for advising reinforcement learning agents. In: Proc. 20th International Conference on Machine Learning, pp. 792–799 (2003)

    Google Scholar 

  21. Wilson, A., Fern, A., Ray, S., Tadepalli, P.: Multi-task reinforcement learning: a hierarchical Bayesian approach. In: ICML, pp. 1015–1022 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Snel, M., Whiteson, S. (2012). Multi-Task Reinforcement Learning: Shaping and Feature Selection. In: Sanner, S., Hutter, M. (eds) Recent Advances in Reinforcement Learning. EWRL 2011. Lecture Notes in Computer Science(), vol 7188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29946-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29946-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29945-2

  • Online ISBN: 978-3-642-29946-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics